Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hakan Muyderman is active.

Publication


Featured researches published by Hakan Muyderman.


The Journal of Neuroscience | 2004

Highly Selective and Prolonged Depletion of Mitochondrial Glutathione in Astrocytes Markedly Increases Sensitivity to Peroxynitrite

Hakan Muyderman; Michael Nilsson; Neil R. Sims

Glutathione, a major endogenous antioxidant, is found in two intracellular pools in the cytoplasm and the mitochondria. To investigate the importance of the smaller mitochondrial pool, we developed conditions based on treatment with ethacrynic acid that produced near-complete and highly selective depletion of mitochondrial glutathione in cultured astrocytes. Recovery of mitochondrial glutathione was only partial over several hours, suggesting slow net uptake from the cytoplasm. Glutathione depletion alone did not significantly affect mitochondrial membrane potential, ATP content, or cell viability when assessed after 24 hr, although the activities of respiratory chain complexes were altered. However, these astrocytes showed a greatly enhanced sensitivity to 3-morpholinosydnonimine, a peroxynitrite generator. Treatment with 200 μm 3-morpholinosydnonimine produced decreases within 3 hr in mitochondrial membrane potential and ATP content and caused the release of lactate dehydrogenase, contrasting with preservation of these properties in control cells. These properties deteriorated further by 24 hr in the glutathione-depleted cells and were associated with morphological changes indicative of necrotic cell death. This treatment enhanced the alterations in activities of the respiratory chain complexes observed with glutathione depletion alone. Cell viability was markedly improved by cyclosporin A, suggesting a role for the mitochondrial permeability transition in the astrocytic death. These studies provide the most direct evidence available for any cell type on the roles of mitochondrial glutathione. They demonstrate the critical importance of this metabolite pool in protecting against peroxynitrite-induced damage in astrocytes and indicate a key contribution in determining the activities of respiratory chain components.


Journal of Neurochemistry | 2007

Mitochondrial glutathione protects against cell death induced by oxidative and nitrative stress in astrocytes

Hakan Muyderman; Alison L. Wadey; Michael Nilsson; Neil R. Sims

The major cellular antioxidant, glutathione, is mostly localized in the cytosol but a small portion is found in mitochondria. We have recently shown that highly selective depletion of mitochondrial glutathione in astrocytes in culture markedly increased cell death induced by the peroxynitrite donor, 3‐morpholino‐syndnonimine. The present study was aimed at characterizing the increase in susceptibility arising from mitochondrial glutathione loss and testing the possibility that elevating this metabolite pool above normal values could be protective. The increased vulnerability of astrocytes with depleted mitochondrial glutathione to Sin‐1 was confirmed. Furthermore, these cells showed marked increases in sensitivity to hydrogen peroxide and also to high concentrations of the nitric oxide donor, S‐nitroso‐N‐acetyl‐penicillamine. The increase in cell death was mostly due to necrosis as indicated by substantially increased release of lactate dehydrogenase and staining of nuclei with propidium iodide but little change in annexin V staining and caspase 3 activation. The enhanced cell loss was blocked by prior restoration of the mitochondrial glutathione content. It was also essentially fully inhibited by treatment with cyclosporin A, consistent with a role for the mitochondrial permeability transition in the development of cell death. Susceptibility to the classical apoptosis inducer, staurosporine, was only affected to a small extent in contrast to the response to the other substances tested. Incubation of normal astrocytes with glutathione monoethylester produced large and long‐lasting increases in mitochondrial glutathione content with much smaller effects on the cytosolic glutathione pool. This treatment reduced cell death on exposure to 3‐morpholino‐syndnonimine or hydrogen peroxide but not S‐nitroso‐N‐acetyl‐pencillamine or staurosporine. These findings provide evidence for an important role for mitochondrial glutathione in preserving cell viability during periods of oxidative or nitrative stress and indicate that increases in this glutathione pool can confer protection against some of these stressors.


Journal of Neuroimmunology | 2010

ProNGF mediates death of Natural Killer cells through activation of the p75NTR–sortilin complex

Mary-Louise Rogers; Sheree Bailey; Dusan Matusica; Ian C. Nicholson; Hakan Muyderman; Promila Pagadala; Kenneth E. Neet; Heddy Zola; Peter J. Macardle; Robert A. Rush

The common neurotrophin receptor P75NTR, its co-receptor sortilin and ligand proNGF, have not previously been investigated in Natural Killer (NK) cell function. We found freshly isolated NK cells express sortilin but not significant amounts of P75NTR unless exposed to interleukin-12 (IL-12), or cultured in serum free conditions, suggesting this receptor is sequestered. A second messenger associated with p75NTR, neurotrophin-receptor-interacting-MAGE-homologue (NRAGE) was identified in NK cells. Cleavage resistant proNGF123 killed NK cells in the presence of IL-12 after 20h and without IL-12 in serum free conditions at 48h. This was reduced by blocking sortilin with neurotensin. We conclude that proNGF induced apoptosis of NK cells may have important implications for limiting the innate immune response.


Journal of Neurochemistry | 2009

Mitochondrial glutathione uptake: characterization in isolated brain mitochondria and astrocytes in culture

Alison L. Wadey; Hakan Muyderman; Perrin T. Kwek; Neil R. Sims

Glutathione in the mitochondria is an important determinant of cellular responses to oxidative stress. Mitochondrial glutathione is maintained by uptake from the cytosol, a process that has been little studied in brain cells. In the present study, measurements using isolated rat brain mitochondria showed a rapid uptake of [3H]‐glutathione that was strongly influenced by the mitochondrial glutathione content. [3H]‐glutathione incorporated into the mitochondria was not rapidly released. Uptake was inhibited by substrates and inhibitors for several known mitochondrial anion transporters. Citrate, isocitrate and benzene‐1,2,3‐tricarboxylate were particularly effective inhibitors, suggesting a possible role for a tricarboxylate carrier in the glutathione transport. The properties of uptake differed greatly from those reported previously for mitochondria from kidney and liver. In astrocytes in primary culture, diethylmaleate or hydrogen peroxide treatment resulted in depletion of cytosolic and mitochondrial glutathione. The pattern of restoration of glutathione content in the presence of glutathione precursors following treatment with diethylmaleate was consistent with uptake into mitochondria being controlled primarily by the glutathione gradient between the cytosol and mitochondria. However, following hydrogen peroxide treatment, recovery of glutathione in the mitochondria initially preceded comparable proportional restoration in the cytosol, suggesting the possibility of additional controls on glutathione uptake in some conditions.


Neurochemical Research | 2009

The Human G93A-Superoxide Dismutase-1 Mutation, Mitochondrial Glutathione and Apoptotic Cell Death

Hakan Muyderman; P. G. Hutson; Dusan Matusica; Mary-Louise Rogers; Robert A. Rush

Mutations in Cu/Zn superoxide dismutase are a cause of motor neuron death in about 20% of cases of familial amyotrophic lateral sclerosis (ALS). Although the molecular mechanism of which these mutations induce motor neuron cell death is to a large extent unknown, there is significant evidence that effects on mitochondrial function and development of oxidative stress make a major contribution to the selective death of motor neurons in this disease. In this overview article we review the current understanding of mutant SOD1-mediated motor neuron degeneration in ALS with focus on oxidative damage and mitochondrial dysfunction. We also present novel information on the role of mitochondrial glutathione for the survival of NSC-34 cells stably transfected with the human SOD1G93A mutation, putting forward the hypothesis that this antioxidant pool provides a potentially useful target for therapeutic intervention.


British Journal of Pharmacology | 2014

Mitochondrial dysfunction in amyotrophic lateral sclerosis – a valid pharmacological target?

Hakan Muyderman; T Chen

Amyotrophic lateral sclerosis (ALS) is an adult‐onset neurodegenerative disease characterized by the selective death of upper and lower motor neurons which ultimately leads to paralysis and ultimately death. Pathological changes in ALS are closely associated with pronounced and progressive changes in mitochondrial morphology, bioenergetics and calcium homeostasis. Converging evidence suggests that impaired mitochondrial function could be pivotal in the rapid neurodegeneration of this condition. In this review, we provide an update of recent advances in understanding mitochondrial biology in the pathogenesis of ALS and highlight the therapeutic value of pharmacologically targeting mitochondrial biology to slow disease progression.


Brain Research | 1998

Modulation of mechanically induced calcium waves in hippocampal astroglial cells. Inhibitory effects of α1-adrenergic stimulation

Hakan Muyderman; Michael Nilsson; Fredrik Blomstrand; Siamak Khatibi; Torsten Olsson; Elisabeth Hansson; Lars Rönnbäck

The effects of different adrenoceptor agonists were investigated on mechanically induced Ca2+ waves in astroglial cells in astroglial-neuronal mixed cultures from rat hippocampus. In the initial part of the study some properties of the waves were characterized. The results show that the initiation of the Ca2+ waves was not critically dependent on extracellular Ca2+ but both the calcium signal and the propagation area of the calcium wave were significantly reduced when the experiments were performed in Ca2+-free buffer. In addition, using the phospholipase C (PLC) inhibitor U-73122 (1 microM) and the gap junction uncoupler octanol (1 mM), the results showed that the Ca2+ wave propagation required PLC activation and functional gap junctions. Further, the data also showed that the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (PMA 150 nM) reduced the spreading of the waves. The adrenoceptor agonists isoproterenol (iso; beta), phenylephrine (phe; alpha1) and clonidine (clon; alpha2) were evaluated for their short-term (<30 s) effects on the wave propagation. The propagation area was persistently decreased 1, 3 and 5 min after removal of phe. No effects were observed after incubation with iso or clon. Furthermore, using U-73122 or PMA together with phe, shortly incubated, the experiments showed that PLC was a central regulator in the initial phase of the initiation procedure of wave propagation. However, under these conditions PKC was shown not to be involved. Instead it appeared that PKC exerted its inhibitory action on the Ca2+ waves in a latter phase, after prolonged phe exposure. Taken together, the results show that the propagation of Ca2+ waves between astroglial cells in primary cultures can be inhibited/regulated in two principally different ways which involve a pronounced time component. The results also further point out the adrenergic signaling system as an important mediator of dynamic neuron-astroglial information exchange.


Oxidative Medicine and Cellular Longevity | 2014

RCAN1 Regulates Mitochondrial Function and Increases Susceptibility to Oxidative Stress in Mammalian Cells

Heshan Peiris; Daphne Dubach; Claire F. Jessup; Petra Unterweger; Ravinarayan Raghupathi; Hakan Muyderman; Mark P. Zanin; Kimberly D. Mackenzie; Melanie Pritchard; Damien J. Keating

Mitochondria are the primary site of cellular energy generation and reactive oxygen species (ROS) accumulation. Elevated ROS levels are detrimental to normal cell function and have been linked to the pathogenesis of neurodegenerative disorders such as Downs syndrome (DS) and Alzheimers disease (AD). RCAN1 is abundantly expressed in the brain and overexpressed in brain of DS and AD patients. Data from nonmammalian species indicates that increased RCAN1 expression results in altered mitochondrial function and that RCAN1 may itself regulate neuronal ROS production. In this study, we have utilized mice overexpressing RCAN1 (RCAN1ox) and demonstrate an increased susceptibility of neurons from these mice to oxidative stress. Mitochondria from these mice are more numerous and smaller, indicative of mitochondrial dysfunction, and mitochondrial membrane potential is altered under conditions of oxidative stress. We also generated a PC12 cell line overexpressing RCAN1 (PC12RCAN1). Similar to RCAN1ox neurons, PC12RCAN1 cells have an increased susceptibility to oxidative stress and produce more mitochondrial ROS. This study demonstrates that increasing RCAN1 expression alters mitochondrial function and increases the susceptibility of neurons to oxidative stress in mammalian cells. These findings further contribute to our understanding of RCAN1 and its potential role in the pathogenesis of neurodegenerative disorders such as AD and DS.


Mitochondrion | 2012

The mitochondrial T1095C mutation increases gentamicin-mediated apoptosis.

Hakan Muyderman; Neil R. Sims; Masashi Tanaka; Noriyuki Fuku; Ravinarayan Raghupathi; Dominic Thyagarajan

We have previously reported a heteroplasmic mtDNA mutation (T1095C) in the 12SrRNA gene of an Italian family with features of maternally-inherited parkinsonism, antibiotic-mediated deafness and peripheral neuropathy. In the present study, we demonstrate that a transmitochondrial cybrid line derived from the proband of this family shows selective depletion of mitochondrial glutathione and decreases in the activity of complex II/III. Moreover, when exposed to an aminoglycoside antibiotic these cells responded with a ten-fold increase in the number of apoptotic cells compared to controls. These results support a pathogenic role for the T1095C mutation and indicate that the mutation increases the risk for aminoglycoside-induced toxicity.


Brain Research | 2014

Selective transfection of microglia in the brain using an antibody-based non-viral vector.

Malmevik J; Mary-Louise Rogers; Michael Nilsson; Yoshinobu Nakanishi; Robert A. Rush; Neil R. Sims; Hakan Muyderman

There are currently few approaches to transiently manipulate the expression of specific proteins in microglia of the brain. An antibody directed against an extracellular epitope of scavenger receptor class B, type I (SR-BI) was found to be selectively taken up by these cells in the brain. Other antibodies tested were not internalised by microglia. A vector was produced by linking the SR-BI antibody to polyethyleneimine and binding a DNA plasmid encoding green fluorescent protein. Infusions of this vector into the hippocampus produced a widespread transfection of cells, more than 80% of which were immunoreactive for microglial/macrophage markers. Transfection was not detected in cells expressing markers for astrocytes or neurons. Reporter gene expression was most prominent near the infusion site but was seen in tissue up to 4mm away. DNA bound to polyethyleneimine alone or to a vector containing a different antibody did not produce transfection in the brain. Single injections of the vector containing the SR-BI antibody into the brain also resulted in transfection of microglia, albeit with lower efficiency. Vector modifications to promote lysis of endosomes or entry of DNA into the nucleus did not increase efficiency. The findings clearly demonstrate the capacity of the SR-BI antibody to selectively target brain microglia. This approach offers considerable potential to deliver DNA and other molecules capable of modifying the function of these cells in vivo.

Collaboration


Dive into the Hakan Muyderman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge