Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hakan Urey is active.

Publication


Featured researches published by Hakan Urey.


IEEE\/ASME Journal of Microelectromechanical Systems | 2006

Two-axis electromagnetic microscanner for high resolution displays

Arda D. Yalcinkaya; Hakan Urey; Dean R. Brown; Tom Montague; Randy Sprague

A novel microelectromechanical systems (MEMS) actuation technique is developed for retinal scanning display and imaging applications allowing effective drive of a two-axes scanning mirror to wide angles at high frequency. Modeling of the device in mechanical and electrical domains, as well as the experimental characterization is described. Full optical scan angles of 65deg and 53deg are achieved for slow (60 Hz sawtooth) and fast (21.3 kHz sinusoid) scan directions, respectively. In combination with a mirror size of 1.5 mm, a resulting thetasopt D product of 79.5 degmiddotmm for fast axis is obtained. This two-dimensional (2-D) magnetic actuation technique delivers sufficient torque to allow non-resonant operation as low as dc in the slow-scan axis while at the same time allowing one-atmosphere operation even at fast-scan axis frequencies large enough to support SXGA (1280 times 1024) resolution scanned beam displays


Proceedings of the IEEE | 2011

State of the Art in Stereoscopic and Autostereoscopic Displays

Hakan Urey; Kishore V. Chellappan; Erdem Erden; Philip Surman

Underlying principles of stereoscopic direct-view displays, binocular head-mounted displays, and autostereoscopic direct-view displays are explained and some early work as well as the state of the art in those technologies are reviewed. Stereoscopic displays require eyewear and can be categorized based on the multiplexing scheme as: 1) color multiplexed (old technology but there are some recent developments; low-quality due to color reproduction and crosstalk issues; simple and does not require additional electronics hardware); 2) polarization multiplexed (requires polarized light output and polarization-based passive eyewear; high-resolution and high-quality displays available); and 3) time multiplexed (requires faster display hardware and active glasses synchronized with the display; high-resolution commercial products available). Binocular head-mounted displays can readily provide 3-D, virtual images, immersive experience, and more possibilities for interactive displays. However, the bulk of the optics, matching of the left and right ocular images and obtaining a large field of view make the designs quite challenging. Some of the recent developments using unconventional optical relays allow for thin form factors and open up new possibilities. Autostereoscopic displays are very attractive as they do not require any eyewear. There are many possibilities in this category including: two-view (the simplest implementations are with a parallax barrier or a lenticular screen), multiview, head tracked (requires active optics to redirect the rays to a moving viewer), and super multiview (potentially can solve the accommodation-convergence mismatch problem). Earlier 3-D booms did not last long mainly due to the unavailability of enabling technologies and the content. Current developments in the hardware technologies provide a renewed interest in 3-D displays both from the consumers and the display manufacturers, which is evidenced by the recent commercial products and new research results in this field.


Applied Optics | 2010

Laser-based displays: a review

Kishore V. Chellappan; Erdem Erden; Hakan Urey

After the invention of lasers, in the past 50 years progress made in laser-based display technology has been very promising, with commercial products awaiting release to the mass market. Compact laser systems, such as edge-emitting diodes, vertical-cavity surface-emitting lasers, and optically pumped semiconductor lasers, are suitable candidates for laser-based displays. Laser speckle is an important concern, as it degrades image quality. Typically, one or multiple speckle reduction techniques are employed in laser displays to reduce speckle contrast. Likewise, laser safety issues need to be carefully evaluated in designing laser displays under different usage scenarios. Laser beam shaping using refractive and diffractive components is an integral part of laser displays, and the requirements depend on the source specifications, modulation technique, and the scanning method being employed in the display. A variety of laser-based displays have been reported, and many products such as pico projectors and laser televisions are commercially available already.


Proceedings of SPIE | 2000

Optical performance requirements for MEMS-scanner-based microdisplays

Hakan Urey; David W. Wine; Thor D. Osborn

High-resolution and high frame rate dynamic microdisplays can be implemented by scanning a photon beam in a raster format across the viewers retina. Microvision is developing biaxial MEMS scanners for such video display applications. This paper discusses the optical performance requirements for scanning display systems. The display resolution directly translates into a scan-angle-mirror-size product and the frame rate translates into vertical and horizontal scanner frequencies. (theta) -product and fh are both very important figures of merit for scanner performance comparison. In addition, the static and dynamic flatness of the scanners, off-axis motion and scan repeatability, scanner position sensor accuracy all have a direct impact on display image quality.


IEEE\/ASME Journal of Microelectromechanical Systems | 2014

MEMS Laser Scanners: A Review

Sven Holmstrom; Utku Baran; Hakan Urey

Laser scanners have been an integral part of MEMS research for more than three decades. During the last decade, miniaturized projection displays and various medical-imaging applications became the main driver for progress in MEMS laser scanners. Portable and truly miniaturized projectors became possible with the availability of red, green, and blue diode lasers during the past few years. Inherent traits of the laser scanning technology, such as the very large color gamut, scalability to higher resolutions within the same footprint, and capability of producing an always-in-focus image render it a very viable competitor in mobile projection. Here, we review the requirements on MEMS laser scanners for the demanding display applications, performance levels of the best scanners in the published literature, and the advantages and disadvantages of electrostatic, electromagnetic, piezoelectric, and mechanically coupled actuation principles. Resonant high-frequency scanners, low-frequency linear scanners, and 2-D scanners are included in this review.


Proceedings of SPIE | 2000

Performance of a biaxial MEMS-based scanner for microdisplay applications

David W. Wine; Mark P. Helsel; Lorne Jenkins; Hakan Urey; Thor D. Osborn

Scanned displays have potential for achieving high brightness and see-through configurations in many display applications. A MEMS- based solution based on these tradeoffs for SVGA level performance is presented, with test data illustrating optical, mechanical, and electrical performance. Comparison of this scanner against video requirements and other scanners previously reported are illustrated. The feasibility of MEMS-based scanners for Retinal Scanning Displays and other applications is discussed, with extension to higher video performance standards.


IEEE\/ASME Journal of Microelectromechanical Systems | 2010

Comb-Actuated Resonant Torsional Microscanner With Mechanical Amplification

Aslihan Arslan; Dean R. Brown; Wyatt O. Davis; Sven Holmstrom; Sertan Kutal Gokce; Hakan Urey

A comb-actuated torsional microscanner is developed for high-resolution laser-scanning display systems. Typical torsional comb-drive scanners have fingers placed around the perimeter of the scanning mirror. In contrast, the structure in this paper uses cascaded frames, where the comb fingers are placed on an outer drive frame, and the motion is transferred to the inner mirror frame with a mechanical gain. The structure works only in resonant mode without requiring any offset in the comb fingers, keeping the silicon-on-insulator-based process quite simple. The design intent is to improve actuator efficiency by removing the high-drag fingers from the high-velocity scanning mirror. Placing them on the lower velocity drive frame reduces their contribution to the damping torque. Furthermore, placement on the drive frame allows an increase of the number of fingers and their capacity to impart torque. The microscanner exhibits a parametric response, and as such, the maximum deflection is found when actuated at twice its natural frequency. Analytical formulas are given for the coupled-mode equations and frame deflections. A simple formula is derived for the mechanical-gain factor. For a 1-mm × 1.5-mm oblong scanning mirror, a 76° total optical scan angle is achieved at 21.8 kHz with 196-V peak-to-peak excitation voltages.


Applied Optics | 2001

Diffractive exit-pupil expander for display applications

Hakan Urey

Two-dimensional binary diffraction gratings can be used in wearable display applications as exit-pupil expanders (EPEs) (or numerical-aperture expanders) to increase the size of the display exit pupil. In retinal scanning displays the EPE is placed at an intermediate image plane between the scanners and the display exit pupil. A focused spot scans across the diffractive EPE and produces multiple diffraction orders at the exit pupil. The overall luminance uniformity across the exit pupil as perceived by the viewer is a function of the uniformity of the diffraction-order intensities, focused-spot size, grating period, scanning-beam profile, and the viewers eye-pupil size. The design, the diffraction-order uniformity, and the effects of the grating phase angle on the uniformity for binary diffraction gratings are discussed. Also discussed are the display exit-pupil uniformity and the impact of the diffractive EPE on the point-spread function and the modulation transfer function of the display. Both theoretical and experimental results are presented.


Applied Optics | 2004

Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams

Hakan Urey

Simple polynomial formulas to calculate the FWHM and full width at 1/e2 intensity diffraction spot size and the depth of focus at a Strehl ratio of 0.8 and 0.5 as a function of a Gaussian beam truncation ratio and a system f-number are presented. Formulas are obtained by use of the numerical integration of a Huygens-Fresnel diffraction integral and can be used to calculate the number of resolvable spots, the modulation transfer function, and the defocus tolerance of optical systems that employ laser beams. I also derived analytical formulas for the diffraction ring intensity as a function of the Gaussian beam truncation ratio and the system f-number. Such formulas can be used to estimate the diffraction-limited contrast of display and imaging systems.


Journal of Micromechanics and Microengineering | 2006

Modeling and characterization of comb-actuated resonant microscanners

Caglar Ataman; Hakan Urey

The dynamics of the out-of-plane comb-drive actuator used in a torsional resonant mode microscanner is discussed. The microscanner is fabricated using the standard SOI technology by Fraunhofer, IPMS and utilized in various display, barcode scanning, spectroscopy and other imaging applications. The device is a parametrically excited system and exhibits hysteretic frequency response, nonlinear transient response, subharmonic oscillations, multiple parametric resonances, and alternating-oscillation-frequency behavior. Analytical and numerical models are developed to predict the parametric system dynamics. The analytical model is based on the solution of the linear Mathieu equation and valid for small angular displacements. The numerical model is valid for both small and large deflection angles. The analytical and numerical models are validated with the experimental results under various ambient pressures and excitation schemes and successfully predict the dynamics of the parametric nature of the microscanner. As many as four parametric resonances are observed at 30 mTorr. The models developed in this paper can be used to optimize the structure and the actuator.

Collaboration


Dive into the Hakan Urey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Onur Ferhanoglu

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge