Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hakimuddin T. Sojar is active.

Publication


Featured researches published by Hakimuddin T. Sojar.


Archives of Biochemistry and Biophysics | 1987

A chemical method for the deglycosylation of proteins.

Hakimuddin T. Sojar; Om P. Bahl

A simple and rapid chemical method for the deglycosylation of glycoproteins has been developed. The method involves the incubation of protein with trifluoromethanesulfonic acid at 0 degrees C from 0.5 to 2 h followed by the neutralization of the acid with aqueous pyridine at -20 degrees C. The method has been applied effectively to fetuin, ovine submaxillary mucin, ovine lutropin, and human choriogonadotropin. In 1 h almost all of N- and O-linked carbohydrates from ovine lutropin and human choriogonadotropin, with the exception of the linkage N-acetylglucosamine or N-acetylgalactosamine, were removed. Similarly, in 1 h all N-linked carbohydrates, excepting again the linkage sugar, in fetuin were degraded. Longer reaction times up to 2 h completely removed the O-linked carbohydrate chains from fetuin and ovine submaxillary mucin. The deglycosylated hormones thus prepared retained their immunological and biological activities.


Journal of Bacteriology | 2005

Identification and Characterization of a Novel Adhesin Unique to Oral Fusobacteria

Yiping W. Han; Akihiko Ikegami; Chythanya Rajanna; Hameem I. Kawsar; Yun Zhou; Mei Li; Hakimuddin T. Sojar; Robert J. Genco; Howard K. Kuramitsu; Cheri X. Deng

Fusobacterium nucleatum is a gram-negative anaerobe that is prevalent in periodontal disease and infections of different parts of the body. The organism has remarkable adherence properties, binding to partners ranging from eukaryotic and prokaryotic cells to extracellular macromolecules. Understanding its adherence is important for understanding the pathogenesis of F. nucleatum. In this study, a novel adhesin, FadA (Fusobacterium adhesin A), was demonstrated to bind to the surface proteins of the oral mucosal KB cells. FadA is composed of 129 amino acid (aa) residues, including an 18-aa signal peptide, with calculated molecular masses of 13.6 kDa for the intact form and 12.6 kDa for the secreted form. It is highly conserved among F. nucleatum, Fusobacterium periodonticum, and Fusobacterium simiae, the three most closely related oral species, but is absent in the nonoral species, including Fusobacterium gonidiaformans, Fusobacterium mortiferum, Fusobacterium naviforme, Fusobacterium russii, and Fusobacterium ulcerans. In addition to FadA, F. nucleatum ATCC 25586 and ATCC 49256 also encode two paralogues, FN1529 and FNV2159, each sharing 31% identity with FadA. A double-crossover fadA deletion mutant, F. nucleatum 12230-US1, was constructed by utilizing a novel sonoporation procedure. The mutant had a slightly slower growth rate, yet its binding to KB and Chinese hamster ovarian cells was reduced by 70 to 80% compared to that of the wild type, indicating that FadA plays an important role in fusobacterial colonization in the host. Furthermore, due to its uniqueness to oral Fusobacterium species, fadA may be used as a marker to detect orally related fusobacteria. F. nucleatum isolated from other parts of the body may originate from the oral cavity.


Clinical and Vaccine Immunology | 2002

Dependence of Bacterial Protein Adhesins on Toll-Like Receptors for Proinflammatory Cytokine Induction

George Hajishengallis; Michael Martin; Hakimuddin T. Sojar; Ashu Sharma; Robert E. Schifferle; Ernesto DeNardin; Michael W. Russell; Robert J. Genco

ABSTRACT Toll-like receptors (TLRs) are important signal transducers that mediate inflammatory reactions induced by microbes through pattern recognition of virulence molecules such as lipopolysaccharide (LPS) and lipoproteins. We investigated whether proinflammatory cytokine responses induced by certain bacterial protein adhesins may also depend on TLRs. In differentiated THP-1 mononuclear cells stimulated by LPS-free recombinant fimbrillin (rFimA) from Porphyromonas gingivalis, cytokine release was abrogated by monoclonal antibodies (MAbs) to CD14 and TLR4 but not to TLR2. Similar experiments using anti-β2 integrin MAbs suggested that β2 integrins (CD11/CD18) also play a role in cytokine induction by rFimA or native fimbriae. Minor fimbriae (distinct from the fimA-encoded major fimbriae) of P. gingivalis induced proinflammatory cytokine release in a CD14- and TLR2-dependent mode. Cytokine induction by BspA, a leucine-rich repeat protein from Bacteroides forsythus, depended heavily on CD14 and TLR2. We also found that the ability of the streptococcal protein AgI/II to stimulate cytokine release depended partially on CD14 and TLR4, and the AgI/II segment that possibly interacts with these receptors was identified as its N-terminal saliva-binding region. When THP-1 cells were exposed to rFimA for 24 h, surface expression of CD14 and CD18 was decreased and the cells became hyporesponsive to cytokine induction by a second challenge with rFimA. However, tolerance induction was abolished when the THP-1 cells were pretreated with rFimA in the presence of either anti-CD14 MAb or anti-TLR4 MAb. Induction of cross-tolerance between rFimA and LPS correlated with downregulation of the pattern recognition receptors involved. Our data suggest that the CD14-TLR2/4 system is involved in cytokine production and tolerance induction upon interaction with certain proinflammatory bacterial protein adhesins.


Methods in Enzymology | 1987

[27] Chemical deglycosylation of glycoproteins

Hakimuddin T. Sojar; Om P. Bahl

Publisher Summary Deglycosylation of glycoproteins is necessary for a number of studies such as in the structural determination of polypeptide chains, establishment of structure and function relationships of carbohydrates, 1-5 and their biosynthesis in glycoproteins. In all these studies it is important that the conditions used for chemical deglycosylation do not cause an impairment of the physicochemical integrity of the polypeptide chain. Two chemical reagents in the anhydrous form, trifluoromethanesulfonic acid (TFMS) and hydrogen fluoride (HF), have been employed for the deglycosylation of glycoproteins. TFMS by the modified procedure described herein is definitely superior to HF. It is much more potent, sensitive, convenient to use than HF because it does not require any special handling. To prevent any secondary reactions such as the alkylation of the polypeptide chains during deprotection of the protecting group, the use of anisole was made as a scavenger. This chapter discusses the chemical deglycosylation procedure by TFMS and HF in detail.


Immunological Investigations | 2004

Intracellular signaling and cytokine induction upon interactions of Porphyromonas gingivalis fimbriae with pattern-recognition receptors

George Hajishengallis; Hakimuddin T. Sojar; Robert J. Genco; Ernesto DeNardin

Toll‐like receptors (TLRs) and other pattern‐recognition receptors (PRRs) of the innate immune system form functional receptor complexes that recognize and respond to pathogen‐associated molecular patterns (PAMPs). Porphyromonas gingivalis is an important pathogen in human periodontitis and has also been implicated in atherosclerosis. A major virulence factor of this pathogen is the fimbriae, which function as a surface adhesin. Here we present evidence that fimbriae also constitute a predominant P. gingivalis proinflammatory molecule which activates the TLR signaling pathway resulting in induction of proinflammatory cytokines (IL‐1β, IL‐6, and TNF‐α) and chemokines (IL‐8) in monocytic cells. Although TLR2 and TLR4 mediate cellular activation in response to fimbriae, other PRRs, namely CD14 and CD11b/CD18, are involved in the recognition of fimbriae. We thus propose that fimbriae function as a PAMP which interacts with a PRR multi‐receptor complex, where CD14 and CD11b/CD18 function as recruiting receptors and TLRs function as signaling receptors. In addition to cytokine induction, TLR activation by fimbriae also results in upregulation of the CD40, CD80, and CD86 costimulatory molecules in antigen‐presenting cells, suggesting that fimbriae are sensed as a potential “danger” to the host immune system. Moreover, proinflammatory cytokine induction is attenuated upon repeated cellular stimulation with P. gingivalis fimbriae. This mechanism of tolerance induction which serves to mitigate excessive and potentially harmful inflammatory reactions appears to be due partly to fimbria‐induced downregulation of the expression of interleukin‐1 receptor‐associated kinase‐1 (IRAK‐1), an important signaling intermediate of the TLR pathway. Understanding the molecular basis of how the host recognizes and responds to P. gingivalis fimbriae is essential for developing molecular approaches to control P. gingivalis‐induced inflammatory responses in periodontal disease and perhaps atherosclerosis.


Journal of Dental Research | 1997

Porphyromonas gingivalis Fimbriae Mediate Coaggregation with Streptococcus oralis through Specific Domains

Atsuo Amano; T. Fujiwara; Hideki Nagata; Masae Kuboniwa; Ashu Sharma; Hakimuddin T. Sojar; Robert J. Genco; Shigeyuki Hamada; Satoshi Shizukuishi

Fimbriae are major adhesive components on the cell surface of Porphyromonas gingivalis. In this study, we evaluated the role of fimbriae in coaggregation with Streptococcus oralis. Fimbriae purified from P. gingivalis competitively inhibited the coaggregation by 100% at a concentration of 50 ug/mL. On the other hand, the same amount of lipopolysaccharide isolated from P. gingivalis was inhibited by only 25% of the level of the fimbriae. A fimA-inactivated mutant of P. gingivalis failed to show distinct coaggregation activity. Fimbriae added to a solution of various strains of streptococci caused their self-aggregation at a concentration of 10 to 30 ug/mL. The self-aggregation induced by fimbriae was inhibited by \-arginine (20 to 40 mM/L). Iodinated fimbriae reacted with S. oralis cells immobilized on the nitrocellulose membrane, and 100°C heating of the cells diminished the binding abilities. Recombinant fimbrillin (r-Fim, corresponding to whole residues 1 to 337 of native fimbrillin) of P. gingivalis also showed 100% inhibition of the coaggregation. The r-Fim variant (residues 1 to 286) lacking the C-terminal 51 residues was as inhibitory as r-Fim. However, the variant (residues 1 to 265) without the C-terminal 72 residues lost 77% of the inhibitory activity. These findings suggested that residues 266 to 286 contain a domain involved in the coaggregation of P. gingivalis with S. oral is. Inhibition by three polypeptides corresponding to residues 266 to 286, 266 to 337, and 287 to 337 was studied. Peptides 266 to 286 and 266 to 337 inhibited by 96 and 100%, respectively, at a concentration of 1.5 nmol/mL. Peptide 287 to 337 also showed a significant inhibitory effect but to a slightly lesser extent than that of peptide 266 to 286. P. gingivalis fimbriae appear to be involved in coaggregation with streptococci, probably through an adhesive protein molecule(s) of the latter, and the fimbriae possess several domains in the C-terminal residues 266 to 337 for interaction with S. oralis.


Infection and Immunity | 2002

Porphyromonas gingivalis Fimbriae Bind to Cytokeratin of Epithelial Cells

Hakimuddin T. Sojar; Ashu Sharma; Robert J. Genco

ABSTRACT The adherence of Porphyromonas gingivalis to host cells is likely a prerequisite step in the pathogenesis of P. gingivalis-induced periodontal disease. P. gingivalis binds to and invades epithelial cells, and fimbriae are shown to be involved in this process. Little is known regarding epithelial receptor(s) involved in binding of P. gingivalis fimbriae. Using an overlay assay with purified P. gingivalis fimbriae as a probe, two major epithelial cell proteins with masses of 50 and 40 kDa were identified by immunoblotting with fimbria-specific antibodies. Iodinated purified fimbriae also bound to the same two epithelial cell proteins. An affinity chromatography technique was utilized to isolate and purify the epithelial components to which P. gingivalis fimbriae bind. Purified fimbriae were coupled to CNBr-activated Sepharose-4B, and the solubilized epithelial cell extract proteins bound to the immobilized fimbriae were isolated from the column. A major 50-kDa component and a minor 40-kDa component were purified and could be digested with trypsin, suggesting that they were proteins. These affinity-eluted 50- and 40-kDa proteins were then subjected to amino-terminal sequencing, and no sequence could be determined, suggesting that these proteins have blocked amino-terminal residues. CNBr digestion of the 50-kDa component resulted in an internal sequence homologous to that of Keratin I molecules. Further evidence that P. gingivalis fimbriae bind to cytokeratin molecule(s) comes from studies showing that multicytokeratin rabbit polyclonal antibodies cross-react with the affinity-purified 50-kDa epithelial cell surface component. Also, binding of purified P. gingivalis fimbriae to epithelial components can be inhibited in an overlay assay by multicytokeratin rabbit polyclonal antibodies. Furthermore, we showed that biotinylated purified fimbriae bind to purified human epidermal keratin in an overlay assay. These studies suggest that the surface-accessible epithelial cytokeratins may act as receptor(s) for P. gingivalis fimbriae. We hypothesize that adherence of P. gingivalis fimbriae to cytokeratin may be important for colonization of oral mucous membranes and possibly also for activation of epithelial cells.


Biochemical and Biophysical Research Communications | 1991

Purification, characterization and immunolocalization of fimbrial protein from porphyromonas (bacteroides) gingivalis

Hakimuddin T. Sojar; Jin-Yong Lee; Gurrinder S. Bedi; Moon-Il Cho; Robert J. Genco

Rapid and reproducible method is described here for the purification of the 43 kDa fimbrial protein from P. gingivalis by preferential fractionation in the presence of 1% SDS and 0.2M of a bivalent cation at pH 6.5. Homogeneity of the purified 43 kDa was confirmed by SDS-PAGE and Western blot analysis using monoclonal and polyclonal antibodies raised against this protein. Amino acid composition and the amino acid sequence of the first 30 amino acid residues of the purified fimbriae are consistent with the composition and sequence predicted from the cloned gene of the fimbrial subunit. Circular dichroism spectra shows high levels of beta-sheet structure. The purified 43 kDa polymer shows fimbriae-like morphology under the electron microscope. Ultrastructural localization of the 43 kDa protein by the immunogold technique revealed specific labeling of the fimbriae with a diameter of approximately 3.5 to 5.0 nm. Localization of this protein suggest that the 43 kDa component is a fimbrial subunit.


FEBS Letters | 1998

Structures involved in the interaction of Porphyromonas gingivalis fimbriae and human lactoferrin

Hakimuddin T. Sojar; Nobushiro Hamada; Robert J. Genco

The ability of laboratory and clinical strains of Porphyromonas gingivalis to bind lactoferrin has been assessed (FEMS Immunology and Medical Microbiology, 1996, 14, 135–143). Relative binding for P. gingivalis to lactoferrin varies among strains from 3.78 to 26.62%. We also observed that fimbriated strains of P. gingivalis bind more strongly to lactoferrin as compared to nonfimbriated strains of P. gingivalis. This observation led us to study fimbrial interaction with human lactoferrin and the fine structure of these interactions. Binding of iodinated purified fimbriae was studied using an overlay assay. Iodinated fimbriae bind specifically and strongly to human lactoferrin. When various sugars were used to inhibit binding, only N‐acetylgalactosamine and fucose were inhibitory. To confirm further that oligosaccharide of lactoferrin is involved in the interaction, lactoferrin was chemically deglycosylated, and fimbriae failed to bind deglycosylated lactoferrin. Antifimbriae, as well as four antipeptide antibodies against different regions of the P. gingivalis fimbrillin, were used to inhibit the interaction. Antipeptide E, directed against amino acids 81–98 (AAGLIMTAEPKTIVLKAG‐C), was found to be the most effective inhibitor for the lactoferrin‐fimbriae interaction. These results suggest that the binding of P. gingivalis cells to lactoferrin is lectin like, directed to a oligosaccharide of lactoferrin. Furthermore, these studies suggest that the region of fimbriae that binds to lactoferrin is the N‐terminus of the molecule. It is likely that binding of lactoferrin to P. gingivalis cells results in antimicrobial activity directed against these cells by virtue of its ability to deprive the bacterial cell of needed iron.


Mechanisms of Ageing and Development | 1986

Protein synthesis by liver ribosomes from aged rats

Hakimuddin T. Sojar; Morton Rothstein

The age-related decrease in protein synthesis by cell-free systems has been traced to a factor which can be obtained by high salt extraction of young polysomes. Such extracts, when added to old ribosomes in young post-ribosomal supernate, stimulate the level of Poly(U)-directed protein synthesis. Extracts of old polysomes have essentially no effect. The deficient factor is not EF-2 and is highly unlikely to be EF-1, as this component resides almost entirely in the post-ribosomal supernates used in the reaction mixture. Since initiation factors are not necessary for Poly(U)-directed protein synthesis and EF-1 and EF-2 do not appear to be involved, the nature of the soluble factor which is deficient in old ribosomes appears to lie outside of proteins which are commonly implicated in the age-related slowing of protein synthesis.

Collaboration


Dive into the Hakimuddin T. Sojar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge