Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Håkon Dahle is active.

Publication


Featured researches published by Håkon Dahle.


International Journal of Systematic and Evolutionary Microbiology | 2009

Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid

J. L. DiPippo; Camilla L. Nesbø; Håkon Dahle; W. F. Doolittle; Birkland Nk; Kenneth M. Noll

A novel thermophilic, heterotrophic bacterium, strain TBF 19.5.1(T), was isolated from oil production fluid at the Troll B oil platform in the North Sea. Cells of strain TBF 19.5.1(T) were non-motile rods with a sheath-like structure, or toga. The strain was Gram-negative and grew at 20-80 degrees C (optimum 65 degrees C), pH 5.5-8.0 (optimum pH 6.8) and NaCl concentrations of 10-60 g l(-1) (optimum 25-30 g l(-1)). For a member of the order Thermotogales, the novel isolate is capable of unprecedented growth at low temperatures, with an optimal doubling time of 175 min (specific growth rate 0.24 h(-1)) and a final optical density of >1.4 when grown on pyruvate at 37 degrees C. Various carbohydrates, proteinaceous compounds and pyruvate served as growth substrates. Thiosulfate, but not elemental sulfur, enhanced growth of the isolate. Sulfate also enhanced growth, but sulfide was not produced. The strain grew in the presence of up to approximately 15 % oxygen, but only if cysteine was included in the medium. Growth of the isolate was inhibited by acetate, lactate and propionate, while butanol and malate prevented growth. The major fermentation products formed on maltose were hydrogen, carbon dioxide and acetic acid, with traces of ethanol and propionic acid. The G+C content of the genomic DNA was 42.5 mol%. Phylogenetic analyses of the 16S and 23S rRNA gene sequences as well as 29 protein-coding ORFs placed the strain within the bacterial order Thermotogales. Based on the phylogenetic analyses and the possession of a variety of physiological characteristics not previously found in any species of this order, it is proposed that the strain represents a novel species of a new genus within the family Thermotogaceae, order Thermotogales. The name Kosmotoga olearia gen. nov., sp. nov. is proposed. The type strain of Kosmotoga olearia is TBF 19.5.1(T) (=DSM 21960(T) =ATCC BAA-1733(T)).


FEMS Microbiology Ecology | 2011

New insight into stratification of anaerobic methanotrophs in cold seep sediments

Irene Roalkvam; Steffen Leth Jørgensen; Yifeng Chen; Runar Stokke; Håkon Dahle; William Peter Hocking; Anders Lanzén; Haflidi Haflidason; Ida Helene Steen

Methane seepages typically harbor communities of anaerobic methane oxidizers (ANME); however, knowledge about fine-scale vertical variation of ANME in response to geochemical gradients is limited. We investigated microbial communities in sediments below a white microbial mat in the G11 pockmark at Nyegga by 16S rRNA gene tag pyrosequencing and real-time quantitative PCR. A vertical stratification of dominating ANME communities was observed at 4 cmbsf (cm below seafloor) and below in the following order: ANME-2a/b, ANME-1 and ANME-2c. The ANME-1 community was most numerous and comprised single or chains of cells with typical rectangular morphology, accounting up to 89.2% of the retrieved 16S rRNA gene sequences. Detection rates for sulfate-reducing Deltaproteobacteria possibly involved in anaerobic oxidation of methane were low throughout the core. However, a correlation in the abundance of Candidate division JS-1 with ANME-2 was observed, indicating involvement in metabolisms occurring in ANME-2-dominated horizons. The white microbial mat and shallow sediments were dominated by organisms affiliated with Sulfurovum (Epsilonproteobacteria) and Methylococcales (Gammaproteobacteria), suggesting that aerobic oxidation of sulfur and methane is taking place. In intermediate horizons, typical microbial groups associated with methane seeps were recovered. The data are discussed with respect to co-occurring microbial assemblages and interspecies interactions.


Journal of Bacteriology | 2009

The genome of Thermosipho africanus TCF52B: lateral genetic connections to the Firmicutes and Archaea.

Camilla L. Nesbø; Eric Bapteste; Bruce A. Curtis; Håkon Dahle; Philippe Lopez; Dave MacLeod; Marlena Dlutek; Sharen Bowman; Olga Zhaxybayeva; Nils-Kåre Birkeland; W. Ford Doolittle

Lateral gene transfers (LGT) (also called horizontal gene transfers) have been a major force shaping the Thermosipho africanus TCF52B genome, whose sequence we describe here. Firmicutes emerge as the principal LGT partner. Twenty-six percent of phylogenetic trees suggest LGT with this group, while 13% of the open reading frames indicate LGT with Archaea.


Geobiology | 2013

Microbial life associated with low‐temperature alteration of ultramafic rocks in the Leka ophiolite complex

Frida Lise Daae; I. Okland; Håkon Dahle; Steffen Leth Jørgensen; Ingunn H. Thorseth; Rolf B. Pedersen

Water-rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10-160 cm) and groundwater from a 50-m-deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative-PCR. Different microbial communities were observed in the groundwater, the fracture-coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen-oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low-temperature water-rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer-Tropsch-type reactions, dominated in the fracture-coating material. Putative hydrogen-, ammonia-, manganese- and iron-oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water-rock reactions.


The ISME Journal | 2015

Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge

Håkon Dahle; I. Okland; Ingunn H. Thorseth; Rolf B Pederesen; Ida Helene Steen

Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki’s Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition.


Frontiers in Microbiology | 2015

Physiological and genomic characterization of Arcobacter anaerophilus IR-1 reveals new metabolic features in Epsilonproteobacteria.

Irene Roalkvam; Karine Drønen; Runar Stokke; Frida Lise Daae; Håkon Dahle; Ida Helene Steen

In this study we characterized and sequenced the genome of Arcobacter anaerophilus strain IR-1 isolated from enrichment cultures used in nitrate-amended corrosion experiments. A. anaerophilus IR-1 could grow lithoautotrophically on hydrogen and hydrogen sulfide and lithoheterothrophically on thiosulfate and elemental sulfur. In addition, the strain grew organoheterotrophically on yeast extract, peptone, and various organic acids. We show for the first time that Arcobacter could grow on the complex organic substrate tryptone and oxidize acetate with elemental sulfur as electron acceptor. Electron acceptors utilized by most Epsilonproteobacteria, such as oxygen, nitrate, and sulfur, were also used by A. anaerophilus IR-1. Strain IR-1 was also uniquely able to use iron citrate as electron acceptor. Comparative genomics of the Arcobacter strains A. butzleri RM4018, A. nitrofigilis CI and A. anaerophilus IR-1 revealed that the free-living strains had a wider metabolic range and more genes in common compared to the pathogen strain. The presence of genes for NAD+-reducing hydrogenase (hox) and dissimilatory iron reduction (fre) were unique for A. anaerophilus IR-1 among Epsilonproteobacteria. Finally, the new strain had an incomplete denitrification pathway where the end product was nitrite, which is different from other Arcobacter strains where the end product is ammonia. Altogether, our study shows that traditional characterization in combination with a modern genomics approach can expand our knowledge on free-living Arcobacter, and that this complementary approach could also provide invaluable knowledge about the physiology and metabolic pathways in other Epsilonproteobacteria from various environments.


Environmental Microbiology | 2015

Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm

Runar Stokke; Håkon Dahle; Irene Roalkvam; Juliane Wissuwa; Frida Lise Daae; Ave Tooming-Klunderud; Ingunn H. Thorseth; Rolf B. Pedersen; Ida Helene Steen

Little is known about how lithoautotrophic primary production is connected to microbial organotrophic consumption in hydrothermal systems. Using a multifaceted approach, we analysed the structure and metabolic capabilities within a biofilm growing on the surface of a black smoker chimney in the Lokis Castle vent field. Imaging revealed the presence of rod-shaped Bacteroidetes growing as ectobionts on long, sheathed microbial filaments (> 100 μm) affiliated with the Sulfurovum genus within Epsilonproteobacteria. The filaments were composed of a thick (> 200 nm) stable polysaccharide, representing a substantial fraction of organic carbon produced by primary production. An integrated -omics approach enabled us to assess the metabolic potential and in situ metabolism of individual taxonomic and morphological groups identified by imaging. Specifically, we provide evidence that organotrophic Bacteroidetes attach to and glide along the surface of Sulfurovum filaments utilizing organic polymers produced by the lithoautotrophic Sulfurovum. Furthermore, in situ expression of acetyl-CoA synthetase by Sulfurovum suggested the ability to assimilate acetate, indicating recycling of organic matter in the biofilm. This study expands our understanding of the lifestyles of Epsilonproteobacteria in hydrothermal vents, their metabolic properties and co-operative interactions in deep-sea hydrothermal vent food webs.


Environmental Microbiology Reports | 2013

The versatile in situ gene expression of an Epsilonproteobacteria-dominated biofilm from a hydrothermal chimney

Håkon Dahle; Irene Roalkvam; Ingunn H. Thorseth; Rolf B. Pedersen; Ida Helene Steen

The Epsilonproteobacteria, including members of the genus Sulfurovum, are regarded as important primary producers in hydrothermal systems. However, their in situ gene expression in this habitat has so far not been investigated. We report a metatranscriptomic analysis of a Sulfurovum-dominated biofilm from one of the chimneys at the Lokis Castle hydrothermal system, located at the Arctic Mid Ocean Ridge. Transcripts involved in hydrogen oxidation, oxidation of sulfur species, aerobic respiration and denitrification were abundant and mostly assigned to Sulfurovum, indicating that members of this genus utilize multiple chemical energy sources simultaneously for primary production. Sulfurovum also seemed to have a diverse expression of transposases, potentially involved in horizontal gene transfer. Other transcripts were involved in CO₂ fixation by the reverse TCA cycle, the CRISPR-Cas system, heavy metal resistance, and sensing and responding to changing environmental conditions. Through pyrosequencing of PCR amplified 16S rRNA genes, the Sulfurovum-dominated biofilm was compared with another biofilm from the same chimney, revealing a large shift in the community structure of Epsilonproteobacteria-dominated biofilms over a few metres.


The ISME Journal | 2015

Evidence for extensive gene flow and Thermotoga subpopulations in subsurface and marine environments

Camilla L. Nesbø; Kristen S. Swithers; Håkon Dahle; Thomas Ha Haverkamp; Nils-Kåre Birkeland; Tatiana Sokolova; Ilya V. Kublanov; Olga Zhaxybayeva

Oil reservoirs represent a nutrient-rich ecological niche of the deep biosphere. Although most oil reservoirs are occupied by microbial populations, when and how the microbes colonized these environments remains unanswered. To address this question, we compared 11 genomes of Thermotoga maritima-like hyperthermophilic bacteria from two environment types: subsurface oil reservoirs in the North Sea and Japan, and marine sites located in the Kuril Islands, Italy and the Azores. We complemented our genomes with Thermotoga DNA from publicly available subsurface metagenomes from North America and Australia. Our analysis revealed complex non-bifurcating evolutionary history of the isolates’ genomes, suggesting high amounts of gene flow across all sampled locations, a conjecture supported by numerous recombination events. Genomes from the same type of environment tend to be more similar, and have exchanged more genes with each other than with geographically close isolates from different types of environments. Hence, Thermotoga populations of oil reservoirs do not appear isolated, a requirement of the ‘burial and isolation’ hypothesis, under which reservoir bacteria are descendants of the isolated communities buried with sediments that over time became oil reservoirs. Instead, our analysis supports a more complex view, where bacteria from subsurface and marine populations have been continuously migrating into the oil reservoirs and influencing their genetic composition. The Thermotoga spp. in the oil reservoirs in the North Sea and Japan probably entered the reservoirs shortly after they were formed. An Australian oil reservoir, on the other hand, was likely colonized very recently, perhaps during human reservoir development.


Frontiers in Microbiology | 2012

Fine-Scale Community Structure Analysis of ANME in Nyegga Sediments with High and Low Methane Flux

Irene Roalkvam; Håkon Dahle; Yifeng Chen; Steffen Leth Jørgensen; Haflidi Haflidason; Ida Helene Steen

To obtain knowledge on how regional variations in methane seepage rates influence the stratification, abundance, and diversity of anaerobic methanotrophs (ANME), we analyzed the vertical microbial stratification in a gravity core from a methane micro-seeping area at Nyegga by using 454-pyrosequencing of 16S rRNA gene tagged amplicons and quantitative PCR. These data were compared with previously obtained data from the more active G11 pockmark, characterized by higher methane flux. A down core stratification and high relative abundance of ANME were observed in both cores, with transition from an ANME-2a/b dominated community in low-sulfide and low methane horizons to ANME-1 dominance in horizons near the sulfate-methane transition zone. The stratification was over a wider spatial region and at greater depth in the core with lower methane flux, and the total 16S rRNA copy numbers were two orders of magnitude lower than in the sediments at G11 pockmark. A fine-scale view into the ANME communities at each location was achieved through operational taxonomical units (OTU) clustering of ANME-affiliated sequences. The majority of ANME-1 sequences from both sampling sites clustered within one OTU, while ANME-2a/b sequences were represented in unique OTUs. We suggest that free-living ANME-1 is the most abundant taxon in Nyegga cold seeps, and also the main consumer of methane. The observation of specific ANME-2a/b OTUs at each location could reflect that organisms within this clade are adapted to different geochemical settings, perhaps due to differences in methane affinity. Given that the ANME-2a/b population could be sustained in less active seepage areas, this subgroup could be potential seed populations in newly developed methane-enriched environments.

Collaboration


Dive into the Håkon Dahle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge