Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hal Blumenfeld is active.

Publication


Featured researches published by Hal Blumenfeld.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Cerebral energetics and spiking frequency: The neurophysiological basis of fMRI

Arien J. Smith; Hal Blumenfeld; Kevin L. Behar; Douglas L. Rothman; Robert G. Shulman; Fahmeed Hyder

Functional MRI (fMRI) is widely assumed to measure neuronal activity, but no satisfactory mechanism for this linkage has been identified. Here we derived the changes in the energetic component from the blood oxygenation level-dependent (BOLD) fMRI signal and related it to changes in the neuronal spiking frequency in the activated voxels. Extracellular recordings were used to measure changes in cerebral spiking frequency (Δν/ν) of a neuronal ensemble during forepaw stimulation in the α-chloralose anesthetized rat. Under the same conditions localized changes in brain energy metabolism (ΔCMRO2/CMRO2) were obtained from BOLD fMRI data in conjunction with measured changes in cerebral blood flow (ΔCBF/CBF), cerebral blood volume (ΔCBV/CBV), and transverse relaxation rates of tissue water (T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}_{2}^{*}\end{equation*}\end{document} and T2) by MRI methods at 7T. On stimulation from two different depths of anesthesia ΔCMRO2/CMRO2 ≈ Δν/ν. Previous 13C magnetic resonance spectroscopy studies, under similar conditions, had shown that ΔCMRO2/CMRO2 was proportional to changes in glutamatergic neurotransmitter flux (ΔVcyc/Vcyc). These combined results show that ΔCMRO2/CMRO2 ≈ ΔVcyc/Vcyc ≈ Δν/ν, thereby relating the energetic basis of brain activity to neuronal spiking frequency and neurotransmitter flux. Because ΔCMRO2/CMRO2 had the same high spatial and temporal resolutions of the fMRI signal, these results show how BOLD imaging, when converted to ΔCMRO2/CMRO2, responds to localized changes in neuronal spike frequency.


Epilepsia | 2005

Cellular and Network Mechanisms of Spike‐Wave Seizures

Hal Blumenfeld

Summary:  Spike‐wave seizures are often considered a relatively “pure” form of epilepsy, with a uniform defect present in all patients and involvement of the whole brain homogenously. Here, we present evidence against these common misconceptions. Rather than a uniform disorder, spike‐wave rhythms arise from the normal inherent network properties of brain excitatory and inhibitory circuits, where they can be provoked by many different insults in several different brain networks. Here we discuss several different cellular and molecular mechanisms that may contribute to the generation of spike‐wave seizures, particularly in idiopathic generalized epilepsy. In addition, we discuss growing evidence that electrical, neuroimaging, and molecular changes in spike‐wave seizures do not involve the entire brain homogenously. Rather, spike‐wave discharges occur selectively in some thalamocortical networks, while sparing others. It is hoped that improved understanding of the heterogeneous defects and selective brain regions involved will ultimately lead to more effective treatments for spike‐wave seizures.


The Journal of Neuroscience | 2000

Corticothalamic Inputs Control the Pattern of Activity Generated in Thalamocortical Networks

Hal Blumenfeld; David A. McCormick

Absence seizures (3–4 Hz) and sleep spindles (6–14 Hz) occur mostly during slow-wave sleep and have been hypothesized to involve the same corticothalamic network. However, the mechanism by which this network transforms from one form of activity to the other is not well understood. Here we examine this question using ferret lateral geniculate nucleus slices and stimulation of the corticothalamic tract. A feedback circuit, meant to mimic the cortical influence in vivo, was arranged such that thalamic burst firing resulted in stimulation of the corticothalamic tract. Stimuli were either single shocks to mimic normal action potential firing by cortical neurons or high-frequency bursts (six shocks at 200 Hz) to simulate increased cortical firing, such as during seizures. With one corticothalamic stimulus per thalamic burst, 6–10 Hz oscillations resembling spindle waves were generated. However, if the stimulation was a burst, the network immediately transformed into a 3–4 Hz paroxysmal oscillation. This transition was associated with a strong increase in the burst firing of GABAergic perigeniculate neurons. In addition, thalamocortical neurons showed a transition from fast (100–150 msec) IPSPs to slow (∼300 msec) IPSPs. The GABABreceptor antagonist CGP 35348 blocked the slow IPSPs and converted the 3–4 Hz paroxysmal oscillations back to 6–10 Hz spindle waves. Conversely, the GABAA receptor antagonist picrotoxin blocked spindle frequency oscillations resulting in 3–4 Hz oscillations with either single or burst stimuli. We suggest that differential activation of thalamic GABAA and GABAB receptors in response to varying corticothalamic input patterns may be critical in setting the oscillation frequency of thalamocortical network interactions.


The Journal of Neuroscience | 2010

Dynamic Time Course of Typical Childhood Absence Seizures: EEG, Behavior, and Functional Magnetic Resonance Imaging

Xiaoxiao Bai; Matthew Vestal; Rachel Berman; Michiro Negishi; Marisa N. Spann; Clemente Vega; Matthew N. DeSalvo; Edward J. Novotny; R.T. Constable; Hal Blumenfeld

Absence seizures are 5–10 s episodes of impaired consciousness accompanied by 3–4 Hz generalized spike-and-wave discharge on electroencephalography (EEG). The time course of functional magnetic resonance imaging (fMRI) changes in absence seizures in relation to EEG and behavior is not known. We acquired simultaneous EEG–fMRI in 88 typical childhood absence seizures from nine pediatric patients. We investigated behavior concurrently using a continuous performance task or simpler repetitive tapping task. EEG time–frequency analysis revealed abrupt onset and end of 3–4 Hz spike-wave discharges with a mean duration of 6.6 s. Behavioral analysis also showed rapid onset and end of deficits associated with electrographic seizure start and end. In contrast, we observed small early fMRI increases in the orbital/medial frontal and medial/lateral parietal cortex >5 s before seizure onset, followed by profound fMRI decreases continuing >20 s after seizure end. This time course differed markedly from the hemodynamic response function (HRF) model used in conventional fMRI analysis, consisting of large increases beginning after electrical event onset, followed by small fMRI decreases. Other regions, such as the lateral frontal cortex, showed more balanced fMRI increases followed by approximately equal decreases. The thalamus showed delayed increases after seizure onset followed by small decreases, most closely resembling the HRF model. These findings reveal a complex and long-lasting sequence of fMRI changes in absence seizures, which are not detectable by conventional HRF modeling in many regions. These results may be important mechanistically for seizure initiation and termination and may also contribute to changes in EEG and behavior.Absence seizures are 5–10 second episodes of impaired consciousness accompanied by 3–4Hz generalized spike-and-wave discharge on electroencephalography (EEG). The timecourse of functional magnetic resonance imaging (fMRI) changes in absence seizures in relation to EEG and behavior is not known. We acquired simultaneous EEG-fMRI in 88 typical childhood absence seizures from 9 pediatric patients. We investigated behavior concurrently using a continuous performance task (CPT) or simpler repetitive tapping task (RTT). EEG time-frequency analysis revealed abrupt onset and end of 3–4 Hz spike-wave discharges with a mean duration of 6.6 s. Behavioral analysis also showed rapid onset and end of deficits associated with electrographic seizure start and end. In contrast, we observed small early fMRI increases in the orbital/medial frontal and medial/lateral parietal cortex >5s before seizure onset, followed by profound fMRI decreases continuing >20s after seizure end. This timecourse differed markedly from the hemodynamic response function (HRF) model used in conventional fMRI analysis, consisting of large increases beginning after electrical event onset, followed by small fMRI decreases. Other regions, such as the lateral frontal cortex, showed more balanced fMRI increases followed by approximately equal decreases. The thalamus showed delayed increases after seizure onset followed by small decreases, most closely resembling the HRF model. These findings reveal a complex and long lasting sequence of fMRI changes in absence seizures, which are not detectible by conventional HRF modeling in many regions. These results may be important mechanistically for seizure initiation and termination and may also contribute to changes in EEG and behavior.


Epilepsia | 2008

Early treatment suppresses the development of spike-wave epilepsy in a rat model

Hal Blumenfeld; Joshua P. Klein; Ulrich Schridde; Matthew Vestal; Timothy Rice; Davender S. Khera; Chhitij Bashyal; Kathryn Giblin; Crystal Paul-Laughinghouse; Frederick Wang; Anuradha Phadke; John Mission; Ravi K. Agarwal; Dario J. Englot; Joshua E. Motelow; Hrachya Nersesyan; Stephen G. Waxman; April R. Levin

Purpose: Current treatments for epilepsy may control seizures, but have no known effects on the underlying disease. We sought to determine whether early treatment in a model of genetic epilepsy would reduce the severity of the epilepsy phenotype in adulthood.


Lancet Neurology | 2012

Impaired consciousness in epilepsy.

Hal Blumenfeld

Consciousness is essential to normal human life. In epileptic seizures consciousness is often transiently lost, which makes it impossible for the individual to experience or respond. These effects have huge consequences for safety, productivity, emotional health, and quality of life. To prevent impaired consciousness in epilepsy, it is necessary to understand the mechanisms that lead to brain dysfunction during seizures. Normally the consciousness system-a specialised set of cortical-subcortical structures-maintains alertness, attention, and awareness. Advances in neuroimaging, electrophysiology, and prospective behavioural testing have shed light on how epileptic seizures disrupt the consciousness system. Diverse seizure types, including absence, generalised tonic-clonic, and complex partial seizures, converge on the same set of anatomical structures through different mechanisms to disrupt consciousness. Understanding of these mechanisms could lead to improved treatment strategies to prevent impairment of consciousness and improve the quality of life of people with epilepsy.


Journal of Cerebral Blood Flow and Metabolism | 2004

Dynamic fMRI and EEG Recordings During Spike-Wave Seizures and Generalized Tonic-Clonic Seizures in WAG/Rij Rats

Hrachya Nersesyan; Fahmeed Hyder; Douglas L. Rothman; Hal Blumenfeld

Generalized epileptic seizures produce widespread physiological changes in the brain. Recent studies suggest that “generalized” seizures may not involve the whole brain homogeneously. For example, electrophysiological recordings in WAG/Rij rats, an established model of human absence seizures, have shown that spike-and-wave discharges are most intense in the perioral somatosensory cortex and thalamus, but spare the occipital cortex. Is this heterogeneous increased neuronal activity matched by changes in local cerebral blood flow sufficient to meet or exceed cerebral oxygen consumption? To investigate this, we performed blood oxygen level-dependent functional magnetic resonance imaging (fMRI) measurements at 7T with simultaneous electroencephalogram recordings. During spontaneous spike-wave seizures in WAG/Rij rats under fentanylhaloperidol anesthesia, we found increased fMRI signals in focal regions including the perioral somatosensory cortex, known to be intensely involved during seizures, whereas the occipital cortex was spared. For comparison, we also studied bicuculline-induced generalized tonic-clonic seizures under the same conditions, and found fMRI increases to be larger and more widespread than during spike-and-wave seizures. These findings suggest that even in regions with intense neuronal activity during epileptic seizures, oxygen delivery exceeds metabolic needs, enabling fMRI to be used for investigation of dynamic cortical and subcortical network involvement in this disorder.


Epilepsia | 2003

From Molecules to Networks: Cortical/Subcortical Interactions in the Pathophysiology of Idiopathic Generalized Epilepsy

Hal Blumenfeld

Summary: Generalized epilepsy involves abnormally synchronized activity in large‐scale neuronal networks. Burst firing of action potentials is a potent mechanism for increasing neural synchrony and is thought to enhance cortical and thalamic rhythmic network activity. Absence seizures, a form of generalized epilepsy, occur in children as brief 5‐ to 10‐s periods of behavioral arrest associated with massive 3‐ to 4‐Hz spike‐wave discharges in cortical and thalamic networks. Prior research has shown that enhanced burst firing may be crucial for the transition from normal to epileptic activity. Can enhanced burst firing in one region of the nervous system, such as the cortex, transform the entire thalamocortical network from normal activity to spike‐and‐wave seizures? Enhanced burst firing in corticothalamic neurons may increase γ‐aminobutyric acid‐B (GABAB) receptor activation in the thalamus, leading to the slower, more synchronous oscillations seen in spike‐and‐wave seizures. Does “generalized” spike‐wave activity homogeneously involve the entire brain, or are there crucial nodes that are more important than others for the generation and behavioral manifestations of generalized seizures? Animal and human data suggest that so‐called generalized seizures involve selective thalamocortical networks while sparing others. A greater understanding of these molecular and network mechanisms will ultimately lead to improved targeted therapies for generalized epilepsy.


Brain Research | 2004

Dysregulation of sodium channel expression in cortical neurons in a rodent model of absence epilepsy

Joshua P. Klein; Davender S. Khera; Hrachya Nersesyan; Eyal Y. Kimchi; Stephen G. Waxman; Hal Blumenfeld

Due to the involvement of cortical neurons in spike-wave discharge (SWD) initiation, and the contribution of voltage-gated sodium channels (VGSCs) to neuronal firing, we examined alterations in the expression of VGSC mRNA and protein in cortical neurons in the WAG/Rij absence epileptic rat. WAG/Rij rats were compared to age-matched Wistar control rats at 2, 4, and 6 months. Continuous EEG data was recorded, and percent time in SWD was determined. Tissue from different cortical locations from WAG/Rij and Wistar rats was analyzed for VGSC mRNA (by quantitative PCR) and protein (by immunocytochemistry). SWDs increased with age in WAG/Rij rats. mRNA levels for sodium channels Nav1.1 and Nav1.6, but not Nav1.2, were found to be up-regulated selectively within the facial somatosensory cortex (at AP +0.0, ML +6.0 mm). Protein levels for Nav1.1 and Nav1.6 were up-regulated in layer II-IV cortical neurons in this region of cortex. No significant changes were seen in adjacent regions or other brain areas, including the pre-frontal and occipital cortex. In the WAG/Rij model of absence epilepsy, we identified a specific region of cortex, in layer II-IV neurons on the lateral convexity of the cortex in the facial somatosensory area, where mRNA and protein expression of sodium channel genes Nav1.1 and Nav1.6 are up-regulated. This region of cortex approximately matches the electrophysiologically determined region of seizure onset. Changes in the expression of Nav1.1 and Nav1.6 parallel age-dependent increases in seizure frequency and duration.


Progress in Brain Research | 2005

Consciousness and epilepsy: why are patients with absence seizures absent?

Hal Blumenfeld

Epileptic seizures cause dynamic, reversible changes in brain function and are often associated with loss of consciousness. Of all seizure types, absence seizures lead to the most selective deficits in consciousness, with relatively little motor or other manifestations. Impaired consciousness in absence seizures is not monolithic, but varies in severity between patients and even between episodes in the same patient. In addition, some aspects of consciousness may be more severely involved than other aspects. The mechanisms for this variability are not known. Here we review the literature on human absence seizures and discuss a hypothesis for why effects on consciousness may be variable. Based on behavioral studies, electrophysiology, and recent neuroimaging and molecular investigations, we propose absence seizures impair focal, not generalized brain functions. Impaired consciousness in absence seizures may be caused by focal disruption of information processing in specific corticothalamic networks, while other networks are spared. Deficits in selective and varying cognitive functions may lead to impairment in different aspects of consciousness. Further investigations of the relationship between behavior and altered network function in absence seizures may improve our understanding of both normal and impaired consciousness.

Collaboration


Dive into the Hal Blumenfeld's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge