Halely Balaban
Tel Aviv University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Halely Balaban.
NeuroImage | 2015
Halely Balaban; Roy Luria
The goal of the present study was to examine whether visual working memory (WM) capacity allocation is determined solely by complexity, with the number of objects being redundant, as suggested by flexible resource models. Participants performed the change detection task with random polygons as stimuli, while we monitored the contralateral delay activity (CDA), an electrophysiological marker whose amplitude rises as WM load increases. In Experiment 1, we compared the WM maintenance of one whole polygon to a single half of the polygon, equating the number of items but varying the complexity level. Additionally, we compared the whole polygon to two halves of a polygon, thus roughly equating perceptual complexity but manipulating the number of items. The results suggested that only the number of objects determined WM capacity allocation: the CDA was identical when comparing one whole polygon to one polygon half, even though these conditions differed in complexity. Furthermore, the CDA amplitude was lower in the whole polygon condition relative to the two halves condition, even though both contained roughly the same amount of information. Experiment 2 extended these results by showing that two polygon halves that moved separately but then met and moved together were gradually integrated to consume similar WM capacity as one polygon half. Additionally, in both experiments we found an object benefit in accuracy, corroborating the important role of objects in WM. Our results demonstrate that WM capacity allocation cannot be explained by complexity alone. Instead, it is highly sensitive to objecthood, as suggested by discrete slot models.
Cerebral Cortex | 2016
Halely Balaban; Roy Luria
What makes an integrated object in visual working memory (WM)? Past evidence suggested that WM holds all features of multidimensional objects together, but struggles to integrate color-color conjunctions. This difficulty was previously attributed to a challenge in same-dimension integration, but here we argue that it arises from the integration of 2 distinct objects. To test this, we examined the integration of distinct different-dimension features (a colored square and a tilted bar). We monitored the contralateral delay activity, an event-related potential component sensitive to the number of objects in WM. The results indicated that color and orientation belonging to distinct objects in a shared location were not integrated in WM (Experiment 1), even following a common fate Gestalt cue (Experiment 2). These conjunctions were better integrated in a less demanding task (Experiment 3), and in the original WM task, but with a less individuating version of the original stimuli (Experiment 4). Our results identify the critical factor in WM integration at same- versus separate-objects, rather than at same- versus different-dimensions. Compared with the perfect integration of an objects features, the integration of several objects is demanding, and depends on an interaction between the grouping cues and task demands, among other factors.
Cortex | 2016
Halely Balaban; Roy Luria
This study investigated whether an items representation in visual working memory (VWM) can be updated according to changes in the global task context. We used a modified change detection paradigm, in which the items moved before the retention interval. In all of the experiments, we presented identical color-color conjunction items that were arranged to provide a common fate Gestalt grouping cue during their movement. Task context was manipulated by adding a condition highlighting either the integrated interpretation of the conjunction items or their individuated interpretation. We monitored the contralateral delay activity (CDA) as an online marker of VWM. Experiment 1 employed only a minimal global context; the conjunction items were integrated during their movement, but then were partially individuated, at a late stage of the retention interval. The same conjunction items were perfectly integrated in an integration context (Experiment 2). An individuation context successfully produced strong individuation, already during the movement, overriding Gestalt grouping cues (Experiment 3). In Experiment 4, a short priming of the individuation context managed to individuate the conjunction items immediately after the Gestalt cue was no longer available. Thus, the representations of identical items changed according to the task context, suggesting that VWM interprets incoming input according to global factors which can override perceptual cues.
Frontiers in Psychology | 2014
Ayala S. Allon; Halely Balaban; Roy Luria
In three experiments we manipulated the resolution of novel complex objects in visual working memory (WM) by changing task demands. Previous studies that investigated the trade-off between quantity and resolution in visual WM yielded mixed results for simple familiar stimuli. We used the contralateral delay activity as an electrophysiological marker to directly track the deployment of visual WM resources while participants preformed a change-detection task. Across three experiments we presented the same novel complex items but changed the task demands. In Experiment 1 we induced a medium resolution task by using change trials in which a random polygon changed to a different type of polygon and replicated previous findings showing that novel complex objects are represented with higher resolution relative to simple familiar objects. In Experiment 2 we induced a low resolution task that required distinguishing between polygons and other types of stimulus categories, but we failed in finding a corresponding decrease in the resolution of the represented item. Finally, in Experiment 3 we induced a high resolution task that required discriminating between highly similar polygons with somewhat different contours. This time, we observed an increase in the item’s resolution. Our findings indicate that the resolution for novel complex objects can be increased but not decreased according to task demands, suggesting that minimal resolution is required in order to maintain these items in visual WM. These findings support studies claiming that capacity and resolution in visual WM reflect different mechanisms.
Neuropsychologia | 2018
Halely Balaban; Trafton Drew; Roy Luria
ABSTRACT When an object we represent in visual working memory (VWM) changes, its representation is modified accordingly. VWM can either access and change the existing representation by an updating process, or it can reset, by encoding the object in its novel status as a new representation. Our goal was to show that the determining factor of updating versus resetting is the availability of a stable correspondence between the object and its VWM representation. Here, we demonstrate that updating relies on the object‐to‐representation mapping to access and modify the appropriate representation, while losing this mapping triggers a resetting process. We compared very similar situations of object separation that either allowed the mapping to hold, or caused it to be lost. When an object that was mapped to one representation separated, VWM reset, manifested by a sharp drop in the contralateral delay activity (CDA) amplitude (an electrophysiological marker of VWM contents; Experiment 1), and a behavioral cost to detect salient changes that co‐occurred with the resetting‐triggering event (Experiment 2). When each part was mapped to a different representation, the separation resulted in updating, with a gradual rise in CDA amplitude (Experiment 1), and a reduced behavioral cost (Experiment 2). Thus, while updating and resetting resulted in similar final representations (corresponding to the post‐change objects), their dynamics were different, depending on the availability of the mapping. Our results reveal the triggering conditions of resetting and updating, establish methods to study these online processes, and highlight the importance of the object‐to‐representation correspondence in VWM. HIGHLIGHTSWorking memory (WM) representations change via two processes: updating or resetting.Updating vs. resetting occur based on a mapping between a WM representation and an object.Updating modifies an existing representation, using a valid mapping.Without a reliable mapping WM resets: removes the existing representation and starts anew.Updating and resetting trigger distinct neural and behavioral patterns.
Psychonomic Bulletin & Review | 2018
Halely Balaban; Trafton Drew; Roy Luria
The visual working memory (VWM) resetting process is triggered when the mapping between an object in the environment and its corresponding VWM representation becomes irrelevant. Resetting involves discarding the no longer relevant representations, and encoding novel representations and mappings. We examined how resetting operates on VWM’s contents. Specifically, we tested whether losing only part of the encoded mappings led to resetting all of the VWM representations. Subjects monitored moving polygons for an abrupt shape-change. Occasionally, a polygon separated into two halves that continued to move independently, making the original single mapping irrelevant. This loss of mapping triggered a resetting process, producing a performance cost: subjects missed shape-changes when they occurred during resetting, but not when the changes occurred before or after resetting. Critically, the cost was (1) specific to the separated item, (2) larger when more mappings were lost, and (3) unaffected by the set-size. This suggests that resetting is a “local” process: VWM removes only the representations whose mappings are lost.
Journal of Vision | 2015
Roy Luria; Halely Balaban; Ayala S. Allon
We examined whether visual working memory (WM) capacity allocation is determined solely by complexity, with the number of objects being redundant, as suggested by flexible resource models. Participants performed the change detection task with random polygons as stimuli, while we monitored the contralateral delay activity (CDA), an electrophysiological marker whose amplitude rises as WM capacity load increases. In Experiment 1, we presented random polygons together with other complex items (e.g., shaded cubes and Chinese characters) and decreased the resolution with which random polygons need to be maintained in WM by introducing only between-category changes (e.g., polygon to cube). The results indicated that the polygon still consumed more WM capacity relative a simple object. In Experiment 2, we compared the WM maintenance of one whole polygon to two halves of a polygon, thus equating complexity but manipulating the number of items. Additionally, we compared the whole polygon to a single half of a polygon, equating the number of items but varying the complexity level. The results suggested that only the number of objects determined WM capacity allocation: the CDA amplitude was lower in the whole polygon condition relative to the two halves condition, even though both contained the same amount of information. Furthermore, the CDA was identical when comparing one whole polygon to one polygon half, even though these conditions differed in complexity. Experiment 3 extended these results by showing that two polygon-halves moving separately but then meeting and moving together, were gradually integrated to consume similar WM capacity as one polygon half. Interestingly, we also found an object benefit in accuracy, corroborating the important role of objects in WM. Our results demonstrate that WM capacity allocation is highly sensitive to objecthood, as suggested by discrete slot models. Meeting abstract presented at VSS 2015.
Neuroscience & Biobehavioral Reviews | 2016
Roy Luria; Halely Balaban; Edward Awh; Edward K. Vogel
The Journal of Neuroscience | 2017
Halely Balaban; Roy Luria
Journal of Vision | 2018
Halely Balaban; Trafton Drew; Roy Luria