Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Halidou Tinto is active.

Publication


Featured researches published by Halidou Tinto.


PLOS ONE | 2009

Dihydroartemisinin-Piperaquine and Artemether-Lumefantrine for Treating Uncomplicated Malaria in African Children: A Randomised, Non-Inferiority Trial

Quique Bassat; Modest Mulenga; Halidou Tinto; Patrice Piola; Steffen Borrmann; Clara Menéndez; Michael Nambozi; Innocent Valea; Carolyn Nabasumba; Philip Sasi; Antonella Bacchieri; Marco Corsi; David Ubben; Ambrose Talisuna; Umberto D'Alessandro

Background Artemisinin combination therapies (ACTs) are currently the preferred option for treating uncomplicated malaria. Dihydroartemisinin-piperaquine (DHA-PQP) is a promising fixed-dose ACT with limited information on its safety and efficacy in African children. Methodology/Principal Findings The non-inferiority of DHA-PQP versus artemether-lumefantrine (AL) in children 6–59 months old with uncomplicated P. falciparum malaria was tested in five African countries (Burkina Faso, Kenya, Mozambique, Uganda and Zambia). Patients were randomised (2∶1) to receive either DHA-PQP or AL. Non-inferiority was assessed using a margin of −5% for the lower limit of the one-sided 97.5% confidence interval on the treatment difference (DHA-PQP vs. AL) of the day 28 polymerase chain reaction (PCR) corrected cure rate. Efficacy analysis was performed in several populations, and two of them are presented here: intention-to-treat (ITT) and enlarged per-protocol (ePP). 1553 children were randomised, 1039 receiving DHA-PQP and 514 AL. The PCR-corrected day 28 cure rate was 90.4% (ITT) and 94.7% (ePP) in the DHA-PQP group, and 90.0% (ITT) and 95.3% (ePP) in the AL group. The lower limits of the one-sided 97.5% CI of the difference between the two treatments were −2.80% and −2.96%, in the ITT and ePP populations, respectively. In the ITT population, the Kaplan-Meier estimate of the proportion of new infections up to Day 42 was 13.55% (95% CI: 11.35%–15.76%) for DHA-PQP vs 24.00% (95% CI: 20.11%–27.88%) for AL (p<0.0001). Conclusions/Significance DHA-PQP is as efficacious as AL in treating uncomplicated malaria in African children from different endemicity settings, and shows a comparable safety profile. The occurrence of new infections within the 42-day follow up was significantly lower in the DHA-PQP group, indicating a longer post-treatment prophylactic effect. Trial Registration Controlled-trials.com ISRCTN16263443


Tropical Medicine & International Health | 2009

Rapid malaria diagnostic tests vs. clinical management of malaria in rural Burkina Faso: safety and effect on clinical decisions. A randomized trial

Zeno Bisoffi; Bienvenu Sodiomon Sirima; Andrea Angheben; Claudia Lodesani; Federico Gobbi; Halidou Tinto; Jef Van den Ende

Objectives  To assess if the clinical outcome of patients treated after performing a Rapid Diagnostic Test for malaria (RDT) is at least equivalent to that of controls (treated presumptively without test) and to determine the impact of the introduction of a malaria RDT on clinical decisions.


The Lancet | 2007

Artemether-lumefantrine versus amodiaquine plus sulfadoxine-pyrimethamine for uncomplicated falciparum malaria in Burkina Faso: a randomised non-inferiority trial

Issaka Zongo; Grant Dorsey; Noel Rouamba; Halidou Tinto; Christian Dokomajilar; Robert T Guiguemde; Philip J. Rosenthal; Jean Bosco Ouédraogo

BACKGROUND Artemisinin-based combination regimens are widely advocated for malarial treatment, but other effective regimens might be cheaper and more readily available. Our aim was to compare the risk of recurrent parasitaemia in patients given artemether-lumefantrine with that in those given amodiaquine plus sulfadoxine-pyrimethamine for uncomplicated malaria. METHODS We enrolled 521 patients aged 6 months or older with uncomplicated falciparum malaria in Bobo-Dioulasso, Burkina Faso. Patients were randomly assigned to receive standard doses of either artemether-lumefantrine (261) or amodiaquine plus sulfadoxine-pyrimethamine (260) for 3 days. Primary endpoints were the risks of treatment failure within 28 days, either unadjusted or adjusted by genotyping to distinguish recrudescence from new infection. The study is registered at controlled-trials.gov with the identifier ISRCTN54261005. FINDINGS Of enrolled patients, 478 (92%) completed the 28-day study. The risk of recurrent symptomatic malaria was lowest in the group given amodiaquine plus sulfadoxine-pyrimethamine (1.7%vs 10.2%; risk difference 8.5%; 95% CI 4.3-12.6; p=0.0001); as was the risk of recurrent parasitaemia (4.7%vs 15.1%; 10.4%; 5.1-15.6; p=0.0002). Nearly all recurrences were due to new infections. Recrudescences were four late treatment failures with artemether-lumefantrine and one early treatment failure with amodiaquine plus sulfadoxine-pyrimethamine. Both regimens were safe and well tolerated, with pruritus more common with amodiaquine plus sulfadoxine-pyrimethamine than with artemether-lumefantrine. Each regimen selected for new isolates with mutations that have been associated with decreased drug susceptibility. INTERPRETATION Amodiaquine plus sulfadoxine-pyrimethamine was more effective than was artemether-lumefantrine for the treatment of uncomplicated malaria. For regions of Africa where amodiaquine plus sulfadoxine-pyrimethamine continues to be effective, this less expensive and more available regimen should be considered as an alternative to blanket recommendations for artemisinin-based combination treatment for malaria.


The New England Journal of Medicine | 2015

Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine

Daniel E. Neafsey; Michal Juraska; Trevor Bedford; David Benkeser; Clarissa Valim; Allison D. Griggs; Marc Lievens; Salim Abdulla; Samuel Adjei; Tsiri Agbenyega; Selidji Todagbe Agnandji; Pedro Aide; Scott Anderson; Daniel Ansong; John J. Aponte; Kwaku Poku Asante; Philip Bejon; Ashley J. Birkett; Myriam Bruls; Kristen M. Connolly; Umberto D'Alessandro; Carlota Dobaño; Samwel Gesase; Brian Greenwood; Jonna Grimsby; Halidou Tinto; Mary J. Hamel; Irving Hoffman; Portia Kamthunzi; Simon Kariuki

BACKGROUND The RTS,S/AS01 vaccine targets the circumsporozoite protein of Plasmodium falciparum and has partial protective efficacy against clinical and severe malaria disease in infants and children. We investigated whether the vaccine efficacy was specific to certain parasite genotypes at the circumsporozoite protein locus. METHODS We used polymerase chain reaction-based next-generation sequencing of DNA extracted from samples from 4985 participants to survey circumsporozoite protein polymorphisms. We evaluated the effect that polymorphic positions and haplotypic regions within the circumsporozoite protein had on vaccine efficacy against first episodes of clinical malaria within 1 year after vaccination. RESULTS In the per-protocol group of 4577 RTS,S/AS01-vaccinated participants and 2335 control-vaccinated participants who were 5 to 17 months of age, the 1-year cumulative vaccine efficacy was 50.3% (95% confidence interval [CI], 34.6 to 62.3) against clinical malaria in which parasites matched the vaccine in the entire circumsporozoite protein C-terminal (139 infections), as compared with 33.4% (95% CI, 29.3 to 37.2) against mismatched malaria (1951 infections) (P=0.04 for differential vaccine efficacy). The vaccine efficacy based on the hazard ratio was 62.7% (95% CI, 51.6 to 71.3) against matched infections versus 54.2% (95% CI, 49.9 to 58.1) against mismatched infections (P=0.06). In the group of infants 6 to 12 weeks of age, there was no evidence of differential allele-specific vaccine efficacy. CONCLUSIONS These results suggest that among children 5 to 17 months of age, the RTS,S vaccine has greater activity against malaria parasites with the matched circumsporozoite protein allele than against mismatched malaria. The overall vaccine efficacy in this age category will depend on the proportion of matched alleles in the local parasite population; in this trial, less than 10% of parasites had matched alleles. (Funded by the National Institutes of Health and others.).


Lancet Infectious Diseases | 2015

Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial

Michael T. White; Robert Verity; Jamie T. Griffin; Kwaku Poku Asante; Seth Owusu-Agyei; Brian Greenwood; Chris Drakeley; Samwel Gesase; John Lusingu; Daniel Ansong; Samuel Adjei; Tsiri Agbenyega; Bernhards Ogutu; Lucas Otieno; Walter Otieno; Selidji Todagbe Agnandji; Bertrand Lell; Peter G. Kremsner; Irving Hoffman; Francis Martinson; Portia Kamthunzu; Halidou Tinto; Innocent Valea; Hermann Sorgho; Martina Oneko; Kephas Otieno; Mary J. Hamel; Nahya Salim; Ali Mtoro; Salim Abdulla

Summary Background The RTS,S/AS01 malaria vaccine targets the circumsporozoite protein, inducing antibodies associated with the prevention of Plasmodium falciparum infection. We assessed the association between anti-circumsporozoite antibody titres and the magnitude and duration of vaccine efficacy using data from a phase 3 trial done between 2009 and 2014. Methods Using data from 8922 African children aged 5–17 months and 6537 African infants aged 6–12 weeks at first vaccination, we analysed the determinants of immunogenicity after RTS,S/AS01 vaccination with or without a booster dose. We assessed the association between the incidence of clinical malaria and anti-circumsporozoite antibody titres using a model of anti-circumsporozoite antibody dynamics and the natural acquisition of protective immunity over time. Findings RTS,S/AS01-induced anti-circumsporozoite antibody titres were greater in children aged 5–17 months than in those aged 6–12 weeks. Pre-vaccination anti-circumsporozoite titres were associated with lower immunogenicity in children aged 6–12 weeks and higher immunogenicity in those aged 5–17 months. The immunogenicity of the booster dose was strongly associated with immunogenicity after primary vaccination. Anti-circumsporozoite titres wane according to a biphasic exponential distribution. In participants aged 5–17 months, the half-life of the short-lived component of the antibody response was 45 days (95% credible interval 42–48) and that of the long-lived component was 591 days (557–632). After primary vaccination 12% (11–13) of the response was estimated to be long-lived, rising to 30% (28–32%) after a booster dose. An anti-circumsporozoite antibody titre of 121 EU/mL (98–153) was estimated to prevent 50% of infections. Waning anti-circumsporozoite antibody titres predict the duration of efficacy against clinical malaria across different age categories and transmission intensities, and efficacy wanes more rapidly at higher transmission intensity. Interpretation Anti-circumsporozoite antibody titres are a surrogate of protection for the magnitude and duration of RTS,S/AS01 efficacy, with or without a booster dose, providing a valuable surrogate of effectiveness for new RTS,S formulations in the age groups considered. Funding UK Medical Research Council.


Malaria Journal | 2008

Failure to detect Plasmodium vivax in West and Central Africa by PCR species typing

Richard Culleton; Toshihiro Mita; Mathieu Ndounga; Holger Unger; Pedro Cravo; Giacomo Maria Paganotti; Nobuyuki Takahashi; Akira Kaneko; Hideaki Eto; Halidou Tinto; Corine Karema; Umberto D'Alessandro; Virgílio E. do Rosário; Takatoshi Kobayakawa; Francine Ntoumi; Richard Carter; Kazuyuki Tanabe

BackgroundPlasmodium vivax is estimated to affect 75 million people annually. It is reportedly absent, however, from west and central Africa due to the high prevalence of the Duffy negative phenotype in the indigenous populations. Despite this, non-African travellers consistently return to their own countries with P. vivax malaria after visiting this region. An attempt was made, therefore, to detect the presence of P. vivax parasites in blood samples collected from the indigenous populations of west and central Africa.MethodsParasite species typing (for all four human malaria parasites) was carried out by PCR on 2,588 blood samples collected from individuals from nine African malaria-endemic countries.ResultsMost infections (98.5%) were Plasmodium falciparum, Plasmodium malariae was identified in 8.5% of all infections, and Plasmodium ovale in 3.9%. The prevalence of both parasites varied greatly by country. Only one case of P. vivax was detected from Sao Tome, an island off the west coast of Africa, confirming the scarcity of this parasite in Africa.ConclusionThe prevalence of P. vivax in local populations in sub-Saharan Africa is very low, despite the frequent identification of this parasite in non-African travellers.


Malaria Journal | 2010

Accuracy of a rapid diagnostic test on the diagnosis of malaria infection and of malaria - attributable fever during low and high transmission season in Burkina Faso

Zeno Bisoffi; Sodiomon B. Sirima; Joris Menten; Cristian Pattaro; Andrea Angheben; Federico Gobbi; Halidou Tinto; Claudia Lodesani; Bouma Neya; Maria Gobbo; Jef Van den Ende

BackgroundMalaria management policies currently recommend that the treatment should only be administered after laboratory confirmation. Where microscopy is not available, rapid diagnostic tests (RDTs) are the usual alternative. Conclusive evidence is still lacking on the safety of a test-based strategy for children. Moreover, no formal attempt has been made to estimate RDTs accuracy on malaria-attributable fever. This study aims at estimating the accuracy of a RDT for the diagnosis of both malaria infection and malaria - attributable fever, in a region of Burkina Faso with a typically seasonal malaria transmission pattern.MethodsCross-sectional study. Subjects: all patients aged > 6 months consulting during the study periods. Gold standard for the diagnosis of malaria infection was microscopy. Gold standard for malaria-attributable fever was the number of fevers attributable to malaria, estimated by comparing parasite densities of febrile versus non-febrile subjects. Exclusion criteria: severe clinical condition needing urgent care.ResultsIn the dry season, 186/852 patients with fever (22%) and 213/1,382 patients without fever (15%) had a Plasmodium falciparum infection. In the rainy season, this proportion was 841/1,317 (64%) and 623/1,669 (37%), respectively. The attributable fraction of fever to malaria was 11% and 69%, respectively. The RDT was positive in 113/400 (28.3%) fever cases in the dry season, and in 443/650 (68.2%) in the rainy season. In the dry season, the RDT sensitivity and specificity for malaria infection were 86% and 90% respectively. In the rainy season they were 94% and 78% respectively. In the dry season, the RDT sensitivity and specificity for malaria-attributable fever were 94% and 75%, the positive predictive value (PPV) was 9% and the negative predictive value (NPV) was 99.8%. In the rainy season the test sensitivity for malaria-attributable fever was 97% and specificity was 55%. The PPV ranged from 38% for adults to 82% for infants, while the NPV ranged from 84% for infants to over 99% for adults.ConclusionsIn the dry season the RDT has a low positive predictive value, but a very high negative predictive value for malaria-attributable fever. In the rainy season the negative test safely excludes malaria in adults but not in children.


Malaria Journal | 2012

An analysis of timing and frequency of malaria infection during pregnancy in relation to the risk of low birth weight, anaemia and perinatal mortality in Burkina Faso.

Innocent Valea; Halidou Tinto; Maxime Drabo; Lieven Huybregts; Hermann Sorgho; Jean-Bosco Ouédraogo; Robert T Guiguemde; Jean Pierre Van Geertruyden; Patrick Kolsteren; Umberto D'Alessandro

BackgroundA prospective study aiming at assessing the effect of adding a third dose sulphadoxine-pyrimethamine (SP) to the standard two-dose intermittent preventive treatment for pregnant women was carried out in Hounde, Burkina Faso, between March 2006 and July 2008. Pregnant women were identified as earlier as possible during pregnancy through a network of home visitors, referred to the health facilities for inclusion and followed up until delivery.MethodsStudy participants were enrolled at antenatal care (ANC) visits and randomized to receive either two or three doses of SP at the appropriate time. Women were visited daily and a blood slide was collected when there was fever (body temperature > 37.5°C) or history of fever. Women were encouraged to attend ANC and deliver in the health centre, where the new-born was examined and weighed. The timing and frequency of malaria infection was analysed in relation to the risk of low birth weight, maternal anaemia and perinatal mortality.ResultsData on birth weight and haemoglobin were available for 1,034 women. The incidence of malaria infections was significantly lower in women having received three instead of two doses of SP. Occurrence of first malaria infection during the first or second trimester was associated with a higher risk of low birth weight: incidence rate ratios of 3.56 (p < 0.001) and 1.72 (p = 0.034), respectively. After adjusting for possible confounding factors, the risk remained significantly higher for the infection in the first trimester of pregnancy (adjusted incidence rate ratio = 2.07, p = 0.002). The risk of maternal anaemia and perinatal mortality was not associated with the timing of first malaria infection.ConclusionMalaria infection during first trimester of pregnancy is associated to a higher risk of low birth weight. Women should be encouraged to use long-lasting insecticidal nets before and throughout their pregnancy.


mSphere | 2016

Phylogenomic Analysis Reveals an Asian Origin for African Burkholderia pseudomallei and Further Supports Melioidosis Endemicity in Africa.

Derek S. Sarovich; Benoit Garin; Birgit De Smet; Mirjam Kaestli; Mark Mayo; Peter Vandamme; Jan Jacobs; Palpouguini Lompo; Marc C. Tahita; Halidou Tinto; Innocente Djaomalaza; Bart J. Currie; Erin P. Price

Sporadic melioidosis cases have been reported in the African mainland and Indian Ocean islands, but until recently, these regions were not considered areas where B. pseudomallei is endemic. Given the high mortality rate of melioidosis, it is crucial that this disease be recognized and suspected in all regions of endemicity. Previous work has shown that B. pseudomallei originated in Australia, with subsequent introduction into Asia; however, the precise origin of B. pseudomallei in other tropical regions remains poorly understood. Using whole-genome sequencing, we characterized B. pseudomallei isolates from Madagascar and Burkina Faso. Next, we compared these strains to a global collection of B. pseudomallei isolates to identify their evolutionary origins. We found that African B. pseudomallei strains likely originated from Asia and were closely related to South American strains, reflecting a relatively recent shared evolutionary history. We also identified substantial genetic diversity among African strains, suggesting long-term B. pseudomallei endemicity in this region. ABSTRACT Burkholderia pseudomallei, an environmental bacterium that causes the deadly disease melioidosis, is endemic in northern Australia and Southeast Asia. An increasing number of melioidosis cases are being reported in other tropical regions, including Africa and the Indian Ocean islands. B. pseudomallei first emerged in Australia, with subsequent rare dissemination event(s) to Southeast Asia; however, its dispersal to other regions is not yet well understood. We used large-scale comparative genomics to investigate the origins of three B. pseudomallei isolates from Madagascar and two from Burkina Faso. Phylogenomic reconstruction demonstrates that these African B. pseudomallei isolates group into a single novel clade that resides within the more ancestral Asian clade. Intriguingly, South American strains reside within the African clade, suggesting more recent dissemination from West Africa to the Americas. Anthropogenic factors likely assisted in B. pseudomallei dissemination to Africa, possibly during migration of the Austronesian peoples from Indonesian Borneo to Madagascar ~2,000 years ago, with subsequent genetic diversity driven by mutation and recombination. Our study provides new insights into global patterns of B. pseudomallei dissemination and adds to the growing body of evidence of melioidosis endemicity in Africa. Our findings have important implications for melioidosis diagnosis and management in Africa. IMPORTANCE Sporadic melioidosis cases have been reported in the African mainland and Indian Ocean islands, but until recently, these regions were not considered areas where B. pseudomallei is endemic. Given the high mortality rate of melioidosis, it is crucial that this disease be recognized and suspected in all regions of endemicity. Previous work has shown that B. pseudomallei originated in Australia, with subsequent introduction into Asia; however, the precise origin of B. pseudomallei in other tropical regions remains poorly understood. Using whole-genome sequencing, we characterized B. pseudomallei isolates from Madagascar and Burkina Faso. Next, we compared these strains to a global collection of B. pseudomallei isolates to identify their evolutionary origins. We found that African B. pseudomallei strains likely originated from Asia and were closely related to South American strains, reflecting a relatively recent shared evolutionary history. We also identified substantial genetic diversity among African strains, suggesting long-term B. pseudomallei endemicity in this region.


PLOS ONE | 2014

Frequency of Severe Malaria and Invasive Bacterial Infections among Children Admitted to a Rural Hospital in Burkina Faso

Jessica Maltha; Issa Guiraud; Bérenger Kaboré; Palpouguini Lompo; Benedikt Ley; Emmanuel Bottieau; Chris Van Geet; Halidou Tinto; Jan Jacobs

Background Although severe malaria is an important cause of mortality among children in Burkina Faso, data on community-acquired invasive bacterial infections (IBI, bacteremia and meningitis) are lacking, as well as data on the involved pathogens and their antibiotic resistance rates. Methods The present study was conducted in a rural hospital and health center in Burkina Faso, in a seasonal malaria transmission area. Hospitalized children (<15 years) presenting with T≥38.0°C and/or signs of severe illness were enrolled upon admission. Malaria diagnosis and blood culture were performed for all participants, lumbar puncture when clinically indicated. We assessed the frequency of severe malaria (microscopically confirmed, according to World Health Organization definitions) and IBI, and the species distribution and antibiotic resistance of the bacterial pathogens causing IBI. Results From July 2012 to July 2013, a total of 711 patients were included. Severe malaria was diagnosed in 292 (41.1%) children, including 8 (2.7%) with IBI co-infection. IBI was demonstrated in 67 (9.7%) children (bacteremia, n = 63; meningitis, n = 6), 8 (11.8%) were co-infected with malaria. Non-Typhoid Salmonella spp. (NTS) was the predominant isolate from blood culture (32.8%), followed by Salmonella Typhi (18.8%), Streptococcus pneumoniae (18.8%) and Escherichia coli (12.5%). High antibiotic resistance rates to first line antibiotics were observed, particularly among Gram-negative pathogens. In addition, decreased ciprofloxacin susceptibility and extended-spectrum beta lactamase (ESBL) production was reported for one NTS isolate each. ESBL production was observed in 3/8 E. coli isolates. In-hospital mortality was 8.2% and case-fatality rates for IBI (23.4%) were significantly higher compared to severe malaria (6.8%, p<0.001). Conclusions Although severe malaria was the main cause of illness, IBI were not uncommon and had higher case-fatality rates. The high frequency, antibiotic resistance rates and mortality rates of community acquired IBI require improvement in hygiene, better diagnostic methods and revision of current treatment guidelines.

Collaboration


Dive into the Halidou Tinto's collaboration.

Top Co-Authors

Avatar

Innocent Valea

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hermann Sorgho

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra F. Mens

Royal Tropical Institute

View shared research outputs
Top Co-Authors

Avatar

Raffaella Ravinetto

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Jacobs

Institute of Tropical Medicine Antwerp

View shared research outputs
Researchain Logo
Decentralizing Knowledge