Halina Norbertczak
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Halina Norbertczak.
Nature | 2005
Brendan J. Loftus; Anderson I; Richard J. Davies; Alsmark Uc; Samuelson J; Amedeo P; Roncaglia P; Matthew Berriman; Hirt Rp; Barbara J. Mann; Tomoyoshi Nozaki; Suh B; Mihai Pop; Duchene M; John P. Ackers; Tannich E; Leippe M; Hofer M; Iris Bruchhaus; Willhoeft U; Alok Bhattacharya; Tracey Chillingworth; Carol Churcher; Hance Z; Barbara Harris; David Harris; Kay Jagels; Sharon Moule; Karen Mungall; Doug Ormond
Entamoeba histolytica is an intestinal parasite and the causative agent of amoebiasis, which is a significant source of morbidity and mortality in developing countries. Here we present the genome of E. histolytica, which reveals a variety of metabolic adaptations shared with two other amitochondrial protist pathogens: Giardia lamblia and Trichomonas vaginalis. These adaptations include reduction or elimination of most mitochondrial metabolic pathways and the use of oxidative stress enzymes generally associated with anaerobic prokaryotes. Phylogenomic analysis identifies evidence for lateral gene transfer of bacterial genes into the E. histolytica genome, the effects of which centre on expanding aspects of E. histolyticas metabolic repertoire. The presence of these genes and the potential for novel metabolic pathways in E. histolytica may allow for the development of new chemotherapeutic agents. The genome encodes a large number of novel receptor kinases and contains expansions of a variety of gene families, including those associated with virulence. Additional genome features include an abundance of tandemly repeated transfer-RNA-containing arrays, which may have a structural function in the genome. Analysis of the genome provides new insights into the workings and genome evolution of a major human pathogen.
Nature Genetics | 2007
Christopher S. Peacock; Kathy Seeger; David Harris; Lee Murphy; Jeronimo C. Ruiz; Michael A. Quail; Nick Peters; Ellen Adlem; Adrian Tivey; Martin Aslett; Arnaud Kerhornou; Alasdair Ivens; Audrey Fraser; Marie-Adele Rajandream; Tim Carver; Halina Norbertczak; Tracey Chillingworth; Zahra Hance; Kay Jagels; Sharon Moule; Doug Ormond; Simon Rutter; Rob Squares; Sally Whitehead; Ester Rabbinowitsch; Claire Arrowsmith; Brian R. White; Scott Thurston; Frédéric Bringaud; Sandra L. Baldauf
Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only ∼200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader–associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage.
Genome Research | 2008
Timothy P. Stinear; Torsten Seemann; Paul F. Harrison; Grant A. Jenkin; John K. Davies; Paul D. R. Johnson; Zahra Abdellah; Claire Arrowsmith; Tracey Chillingworth; Carol Churcher; Kay Clarke; Ann Cronin; Paul Davis; Ian Goodhead; Nancy Holroyd; Kay Jagels; Angela Lord; Sharon Moule; Karen Mungall; Halina Norbertczak; Michael A. Quail; Ester Rabbinowitsch; Danielle Walker; Brian R. White; Sally Whitehead; Pamela L. C. Small; Roland Brosch; Lalita Ramakrishnan; Michael A. Fischbach; Julian Parkhill
Mycobacterium marinum, a ubiquitous pathogen of fish and amphibia, is a near relative of Mycobacterium tuberculosis, the etiologic agent of tuberculosis in humans. The genome of the M strain of M. marinum comprises a 6,636,827-bp circular chromosome with 5424 CDS, 10 prophages, and a 23-kb mercury-resistance plasmid. Prominent features are the very large number of genes (57) encoding polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) and the most extensive repertoire yet reported of the mycobacteria-restricted PE and PPE proteins, and related-ESX secretion systems. Some of the NRPS genes comprise a novel family and seem to have been acquired horizontally. M. marinum is used widely as a model organism to study M. tuberculosis pathogenesis, and genome comparisons confirmed the close genetic relationship between these two species, as they share 3000 orthologs with an average amino acid identity of 85%. Comparisons with the more distantly related Mycobacterium avium subspecies paratuberculosis and Mycobacterium smegmatis reveal how an ancestral generalist mycobacterium evolved into M. tuberculosis and M. marinum. M. tuberculosis has undergone genome downsizing and extensive lateral gene transfer to become a specialized pathogen of humans and other primates without retaining an environmental niche. M. marinum has maintained a large genome so as to retain the capacity for environmental survival while becoming a broad host range pathogen that produces disease strikingly similar to M. tuberculosis. The work described herein provides a foundation for using M. marinum to better understand the determinants of pathogenesis of tuberculosis.
Science | 2008
Simone Weyand; Tatsuro Shimamura; Shunsuke Yajima; Shunichi Suzuki; Osman Mirza; Kuakarun Krusong; Elisabeth P. Carpenter; Nicholas G. Rutherford; Jonathan M. Hadden; John O'Reilly; Pikyee Ma; Massoud Saidijam; Simon G. Patching; Ryan J. Hope; Halina Norbertczak; Peter Roach; So Iwata; Peter J. F. Henderson; Alexander D. Cameron
The nucleobase–cation–symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, 10 of which are arranged in two inverted repeats of five helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved, showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine transporter LeuTAa and the galactose transporter vSGLT reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronized by the inverted repeat helices 3 and 8, providing the structural basis of the alternating access model for membrane transport.
The Lancet | 2003
Stephen D. Bentley; Matthias Maiwald; Lee Murphy; Mark J. Pallen; Corin Yeats; Lynn G. Dover; Halina Norbertczak; Gurdyal S. Besra; Michael A. Quail; David Harris; Axel von Herbay; Arlette Goble; Simon Rutter; R. Squares; Stephen Squares; Bart Barrell; Julian Parkhill; David A. Relman
BACKGROUND Whipples disease is a rare multisystem chronic infection, involving the intestinal tract as well as various other organs. The causative agent, Tropheryma whipplei, is a Gram-positive bacterium about which little is known. Our aim was to investigate the biology of this organism by generating and analysing the complete DNA sequence of its genome. METHODS We isolated and propagated T whipplei strain TW08/27 from the cerebrospinal fluid of a patient diagnosed with Whipples disease. We generated the complete sequence of the genome by the whole genome shotgun method, and analysed it with a combination of automatic and manual bioinformatic techniques. FINDINGS Sequencing revealed a condensed 925938 bp genome with a lack of key biosynthetic pathways and a reduced capacity for energy metabolism. A family of large surface proteins was identified, some associated with large amounts of non-coding repetitive DNA, and an unexpected degree of sequence variation. INTERPRETATION The genome reduction and lack of metabolic capabilities point to a host-restricted lifestyle for the organism. The sequence variation indicates both known and novel mechanisms for the elaboration and variation of surface structures, and suggests that immune evasion and host interaction play an important part in the lifestyle of this persistent bacterial pathogen.
Journal of Bacteriology | 2008
Melanie M. Pearson; Mohammed Sebaihia; Carol Churcher; Michael A. Quail; Aswin Sai Narain Seshasayee; Nicholas M. Luscombe; Zahra Abdellah; Claire Arrosmith; Becky Atkin; Tracey Chillingworth; Heidi Hauser; Kay Jagels; Sharon Moule; Karen Mungall; Halina Norbertczak; Ester Rabbinowitsch; Danielle Walker; Sally Whithead; Nicholas R. Thomson; Philip N. Rather; Julian Parkhill; Harry L. T. Mobley
The gram-negative enteric bacterium Proteus mirabilis is a frequent cause of urinary tract infections in individuals with long-term indwelling catheters or with complicated urinary tracts (e.g., due to spinal cord injury or anatomic abnormality). P. mirabilis bacteriuria may lead to acute pyelonephritis, fever, and bacteremia. Most notoriously, this pathogen uses urease to catalyze the formation of kidney and bladder stones or to encrust or obstruct indwelling urinary catheters. Here we report the complete genome sequence of P. mirabilis HI4320, a representative strain cultured in our laboratory from the urine of a nursing home patient with a long-term (> or =30 days) indwelling urinary catheter. The genome is 4.063 Mb long and has a G+C content of 38.88%. There is a single plasmid consisting of 36,289 nucleotides. Annotation of the genome identified 3,685 coding sequences and seven rRNA loci. Analysis of the sequence confirmed the presence of previously identified virulence determinants, as well as a contiguous 54-kb flagellar regulon and 17 types of fimbriae. Genes encoding a potential type III secretion system were identified on a low-G+C-content genomic island containing 24 intact genes that appear to encode all components necessary to assemble a type III secretion system needle complex. In addition, the P. mirabilis HI4320 genome possesses four tandem copies of the zapE metalloprotease gene, genes encoding six putative autotransporters, an extension of the atf fimbrial operon to six genes, including an mrpJ homolog, and genes encoding at least five iron uptake mechanisms, two potential type IV secretion systems, and 16 two-component regulators.
BMC Genomics | 2009
Kathryn E. Holt; Nicholas R. Thomson; John Wain; Gemma C. Langridge; Rumina Hasan; Zulfiqar A. Bhutta; Michael A. Quail; Halina Norbertczak; Danielle Walker; Mark Simmonds; Brian R. White; Nathalie Bason; Karen Mungall; Gordon Dougan; Julian Parkhill
BackgroundOf the > 2000 serovars of Salmonella enterica subspecies I, most cause self-limiting gastrointestinal disease in a wide range of mammalian hosts. However, S. enterica serovars Typhi and Paratyphi A are restricted to the human host and cause the similar systemic diseases typhoid and paratyphoid fever. Genome sequence similarity between Paratyphi A and Typhi has been attributed to convergent evolution via relatively recent recombination of a quarter of their genomes. The accumulation of pseudogenes is a key feature of these and other host-adapted pathogens, and overlapping pseudogene complements are evident in Paratyphi A and Typhi.ResultsWe report the 4.5 Mbp genome of a clinical isolate of Paratyphi A, strain AKU_12601, completely sequenced using capillary techniques and subsequently checked using Illumina/Solexa resequencing. Comparison with the published genome of Paratyphi A ATCC9150 revealed the two are collinear and highly similar, with 188 single nucleotide polymorphisms and 39 insertions/deletions. A comparative analysis of pseudogene complements of these and two finished Typhi genomes (CT18, Ty2) identified several pseudogenes that had been overlooked in prior genome annotations of one or both serovars, and identified 66 pseudogenes shared between serovars. By determining whether each shared and serovar-specific pseudogene had been recombined between Paratyphi A and Typhi, we found evidence that most pseudogenes have accumulated after the recombination between serovars. We also divided pseudogenes into relative-time groups: ancestral pseudogenes inherited from a common ancestor, pseudogenes recombined between serovars which likely arose between initial divergence and later recombination, serovar-specific pseudogenes arising after recombination but prior to the last evolutionary bottlenecks in each population, and more recent strain-specific pseudogenes.ConclusionRecombination and pseudogene-formation have been important mechanisms of genetic convergence between Paratyphi A and Typhi, with most pseudogenes arising independently after extensive recombination between the serovars. The recombination events, along with divergence of and within each serovar, provide a relative time scale for pseudogene-forming mutations, affording rare insights into the progression of functional gene loss associated with host adaptation in Salmonella.
BMC Genomics | 2008
Erik Hjerde; Marit Sjo Lorentzen; Matthew T. G. Holden; Kathy Seeger; Steinar M. Paulsen; Nathalie Bason; Carol Churcher; David Harris; Halina Norbertczak; Michael A. Quail; Suzanne Sanders; Scott Thurston; Julian Parkhill; Nils Peder Willassen; Nicholas R. Thomson
BackgroundThe fish pathogen Aliivibrio salmonicida is the causative agent of cold-water vibriosis in marine aquaculture. The Gram-negative bacterium causes tissue degradation, hemolysis and sepsis in vivo.ResultsIn total, 4 286 protein coding sequences were identified, and the 4.6 Mb genome of A. salmonicida has a six partite architecture with two chromosomes and four plasmids. Sequence analysis revealed a highly fragmented genome structure caused by the insertion of an extensive number of insertion sequence (IS) elements. The IS elements can be related to important evolutionary events such as gene acquisition, gene loss and chromosomal rearrangements. New A. salmonicida functional capabilities that may have been aquired through horizontal DNA transfer include genes involved in iron-acquisition, and protein secretion and play potential roles in pathogenicity. On the other hand, the degeneration of 370 genes and consequent loss of specific functions suggest that A. salmonicida has a reduced metabolic and physiological capacity in comparison to related Vibrionaceae species.ConclusionMost prominent is the loss of several genes involved in the utilisation of the polysaccharide chitin. In particular, the disruption of three extracellular chitinases responsible for enzymatic breakdown of chitin makes A. salmonicida unable to grow on the polymer form of chitin. These, and other losses could restrict the variety of carrier organisms A. salmonicida can attach to, and associate with. Gene acquisition and gene loss may be related to the emergence of A. salmonicida as a fish pathogen.
Journal of Bacteriology | 2007
Kathryn E. Holt; Nicholas R. Thomson; John Wain; Minh-Duy Phan; Satheesh Nair; Rumina Hasan; Zulfiqar A. Bhutta; Michael A. Quail; Halina Norbertczak; Danielle Walker; Gordon Dougan; Julian Parkhill
Salmonella enterica serovars Typhi and Paratyphi A cause systemic infections in humans which are referred to as enteric fever. Multidrug-resistant (MDR) serovar Typhi isolates emerged in the 1980s, and in recent years MDR serovar Paratyphi A infections have become established as a significant problem across Asia. MDR in serovar Typhi is almost invariably associated with IncHI1 plasmids, but the genetic basis of MDR in serovar Paratyphi A has remained predominantly undefined. The DNA sequence of an IncHI1 plasmid, pAKU_1, encoding MDR in a serovar Paratyphi A strain has been determined. Significantly, this plasmid shares a common IncHI1-associated DNA backbone with the serovar Typhi plasmid pHCM1 and an S. enterica serovar Typhimurium plasmid pR27. Plasmids pAKU_1 and pHCM1 share 14 antibiotic resistance genes encoded within similar mobile elements, which appear to form a 24-kb composite transposon that has transferred as a single unit into different positions into their IncHI1 backbones. Thus, these plasmids have acquired similar antibiotic resistance genes independently via the horizontal transfer of mobile DNA elements. Furthermore, two IncHI1 plasmids from a Vietnamese isolate of serovar Typhi were found to contain features of the backbone sequence of pAKU_1 rather than pHCM1, with the composite transposon inserted in the same location as in the pAKU_1 sequence. Our data show that these serovar Typhi and Paratyphi A IncHI1 plasmids share highly conserved core DNA and have acquired similar mobile elements encoding antibiotic resistance genes in past decades.
Genome Biology | 2006
J. Peter W. Young; Lisa Crossman; Andrew W. B. Johnston; Nicholas R. Thomson; Zara F. Ghazoui; Katherine H Hull; Margaret Wexler; Andrew R. J. Curson; Jonathan D. Todd; Philip S. Poole; Tim H. Mauchline; Alison K. East; Michael A. Quail; Carol Churcher; Claire Arrowsmith; Inna Cherevach; Tracey Chillingworth; Kay Clarke; Ann Cronin; Paul Davis; Audrey Fraser; Zahra Hance; Heidi Hauser; Kay Jagels; Sharon Moule; Karen Mungall; Halina Norbertczak; Ester Rabbinowitsch; Mandy Sanders; Mark Simmonds