Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Halley Caixeta Oliveira is active.

Publication


Featured researches published by Halley Caixeta Oliveira.


PLOS ONE | 2015

Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants.

Halley Caixeta Oliveira; Renata Stolf-Moreira; Cláudia Bueno dos Reis Martinez; Renato Grillo; Marcelo Bispo de Jesus; Leonardo Fernandes Fraceto

Poly(epsilon-caprolactone) (PCL) nanocapsules have been recently developed as a modified release system for atrazine, an herbicide that can have harmful effects in the environment. Here, the post-emergence herbicidal activity of PCL nanocapsules containing atrazine was evaluated using mustard (Brassica juncea) as target plant species model. Characterization of atrazine-loaded PCL nanocapsules by nanoparticle tracking analysis indicated a concentration of 7.5 x 1012 particles mL-1 and an average size distribution of 240.7 nm. The treatment of mustard plants with nanocapsules carrying atrazine at 1 mg mL-1 resulted in a decrease of net photosynthesis and PSII maximum quantum yield, and an increase of leaf lipid peroxidation, leading to shoot growth inhibition and the development of severe symptoms. Time course analysis until 72 h after treatments showed that nanoencapsulation of atrazine enhanced the herbicidal activity in comparison with a commercial atrazine formulation. In contrast to the commercial formulation, ten-fold dilution of the atrazine-containing nanocapsules did not compromise the herbicidal activity. No effects were observed when plants were treated with nanocapsules without herbicide compared to control leaves sprayed with water. Overall, these results demonstrated that atrazine-containing PCL nanocapsules provide very effective post-emergence herbicidal activity. More importantly, the use of nanoencapsulated atrazine enables the application of lower dosages of the herbicide, without any loss of efficiency, which could provide environmental benefits.


Brazilian Journal of Botany | 2013

Nitric oxide signaling and homeostasis in plants: a focus on nitrate reductase and S-nitrosoglutathione reductase in stress-related responses

Ione Salgado; M. Carmen Martínez; Halley Caixeta Oliveira; Lucas Frungillo

Studies in the last two decades have firmly established that the gaseous free radical nitric oxide (NO) is an intracellular and intercellular mediator of signal transduction pathways controlling plant growth and development, as well as plant responses to biotic and abiotic stresses. The underlying mechanisms of NO action may rely on its reactivity with different kinds of biomolecules, leading to modulation of enzymatic activities, and of gene transcription, with profound impact on metabolism and signal transduction pathways. NO homeostasis depends on the appropriate coordination of NO synthesis and degradation under different physiological conditions. The mechanisms by which NO is synthesized de novo in plants are still a matter of controversy, although in the last years, the key role of the enzyme nitrate reductase (NR) in plants NO production has been widely accepted. In addition, S-nitrosoglutathione (GSNO), which forms by spontaneous reaction of NO with glutathione, is likely a major NO reservoir and NO donor in plant cells. GSNO levels are controlled by the enzyme GSNO reductase that has emerged as the main enzyme responsible for the modulation of S-nitrosothiol pools. The number of plant processes influenced/modulated by NO has dramatically increased in the last years. This review particularly emphasizes the roles of NR and GSNOR enzymes in NO homeostasis and NO-mediated plant responses to environmental challenges.


Nitric Oxide | 2016

Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants.

Halley Caixeta Oliveira; Bruna C.R. Gomes; Milena T. Pelegrino; Amedea B. Seabra

Nitric oxide (NO) is a signaling molecule involved in plant response to various abiotic stresses. However, the application of NO donors in agriculture is hampered by the instability of these compounds. Despite the successful uses of NO-releasing nanoparticles for biomedical purposes and the variety of nanomaterials developed as carrier systems of agrochemicals, the potential applications of nanocarriers for NO delivery in plants have not yet been tested. Herein, we report the synthesis and characterization of chitosan nanoparticles (CS NPs) containing the NO donor S-nitroso-mercaptosuccinic acid (S-nitroso-MSA). The efficiency of these NO-releasing NPs in mitigating the deleterious effects of salinity on maize plants was compared to that of the non-encapsulated NO donor. The NPs were synthesized through ionotropic gelation process, and mercaptosuccinic acid (MSA), the NO donor precursor, was encapsulated into CS NPs (91.07% encapsulation efficiency). Free thiol groups of MSA-CS NPs were nitrosated, leading to S-nitroso-MSA-CS NPs (NO-releasing NPs). The incorporation of S-nitroso-MSA into CS NPs allowed a sustained NO release. Treatments of salt-stressed maize plants with S-nitroso-MSA-CS NPs resulted in a higher leaf S-nitrosothiols content compared to that of free S-nitroso-MSA. Moreover, S-nitroso-MSA-CS NPs were more efficient than was the free NO donor in the amelioration of the deleterious effects of salinity in photosystem II activity, chlorophyll content and growth of maize plants because the protective action of the nanoencapsulated S-nitroso-MSA was achieved at lower dosages. Overall, these results demonstrate the positive impact of S-nitroso-MSA nanoencapsulation in increasing NO bioactivity in maize plants under salt stress.


Colloids and Surfaces B: Biointerfaces | 2017

Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid

Anderson do Espirito Santo Pereira; Paula Mayara Silva; Jhones L. Oliveira; Halley Caixeta Oliveira; Leonardo Fernandes Fraceto

This work concerns the development of nanocarriers composed of alginate/chitosan (ALG/CS) and chitosan/tripolyphosphate (CS/TPP) for the plant growth regulator gibberellic acid (GA3). ALG/CS nanoparticles with and without GA3 presented mean size of 450±10nm, polydispersity index (PDI) of 0.3, zeta potential of -29±0.5mV, concentrations of 1.52×1011 and 1.92×1011 nanoparticles mL-1, respectively, and 100% encapsulation efficiency. CS/TPP nanoparticles with and without GA3 presented mean size of 195±1nm, PDI of 0.3, zeta potential of +27±3mV, concentrations of 1.92×1012 and 3.54×1012 nanoparticles mL-1, respectively, and 90% encapsulation efficiency. The nanoparticles were stable during 60days and the two systems differed in terms of the release mechanism, with the release depending on factors such as pH and temperature. Bioactivity assays using Phaseolus vulgaris showed that the ALG/CS-GA3 nanoparticles were most effective in increasing leaf area and the levels of chlorophylls and carotenoids. The systems developed showed good potential, providing greater stability and efficiency of this plant hormone in agricultural applications.


Carbohydrate Polymers | 2017

γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: Characterization and evaluation of biological activity

Anderson do Espirito Santo Pereira; I.E. Sandoval-Herrera; S.A. Zavala-Betancourt; Halley Caixeta Oliveira; A.S. Ledezma-Pérez; Jorge Romero; Leonardo Fernandes Fraceto

The growth regulator gibberellic acid (GA3) has several uses in the field, improving germination, plant development, productivity, and the quality of food. This work describes the development of a nanocarrier system for GA3, based on the poly(γ-glutamic acid) (γ-PGA) and chitosan (CS) polymers, Nanoparticles without GA3 (nano-γPGA/CS-GA3) showed colloidal characteristics, with an average size of 117±9nm, PDI of 0.43±0.07, and zeta potential of -29±0.5mV. The encapsulated nanoparticles (nano-γPGA/CS-GA3) presented an average size of 134±9nm, PDI of 0.35±0.05, zeta potential of 27.9±0.5mV, and 61% encapsulation. The images of nanoparticles observed by Transmission and scanning electron microscopy (TEM and SEM) showed a spherical shape of the nanoparticles. The system showed sustained release, with 58% release after 48h. Evaluation of thermal properties using DSC and TGA analyses indicated that there was an interaction between the CS and γ-PGA polymers. In tests using Phaseolus vulgaris seeds, nano-γPGA/CS-GA3 showed high biological activity, enhancing the rate of germination in the first day (50-70%) when compared with free GA3 (10-16%). Encapsulated GA3 was also more efficient than the free hormone in the increase of leaf area and the induction of root development (including the formation of lateral roots). These effects were not observed when seeds were treated with nano-γPGA/CS without GA3. The results demonstrated the considerable potential of nano-γPGA/CS-GA3 for use in agriculture.


Frontiers in chemistry | 2015

Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants

Halley Caixeta Oliveira; Renata Stolf-Moreira; Cláudia Bueno dos Reis Martinez; Gustavo F. M. Sousa; Renato Grillo; Marcelo Bispo de Jesus; Leonardo Fernandes Fraceto

Poly(epsilon-caprolactone) (PCL) nanocapsules have been used as a carrier system for the herbicide atrazine, which is commonly applied to maize. We demonstrated previously that these atrazine containing polymeric nanocapsules were 10-fold more effective in the control of mustard plants (a target species), as compared to a commercial atrazine formulation. Since atrazine can have adverse effects on non-target crops, here we analyzed the effect of encapsulated atrazine on growth, physiological and oxidative stress parameters of soil-grown maize plants (Zea mays L.). One day after the post-emergence treatment with PCL nanocapsules containing atrazine (1 mg mL−1), maize plants presented 15 and 21% decreases in maximum quantum yield of photosystem II (PSII) and in net CO2 assimilation rate, respectively, as compared to water-sprayed plants. The same treatment led to a 1.8-fold increase in leaf lipid peroxidation in comparison with control plants. However, all of these parameters were unaffected 4 and 8 days after the application of encapsulated atrazine. These results suggested that the negative effects of atrazine were transient, probably due to the ability of maize plants to detoxify the herbicide. When encapsulated atrazine was applied at a 10-fold lower concentration (0.1 mg mL−1), a dosage that is still effective for weed control, no effects were detected even shortly after application. Regardless of the herbicide concentration, neither pre- nor post-emergence treatment with the PCL nanocapsules carrying atrazine resulted in the development of any macroscopic symptoms in maize leaves, and there were no impacts on shoot growth. Additionally, no effects were observed when plants were sprayed with PCL nanocapsules without atrazine. Overall, these results suggested that the use of PCL nanocapsules containing atrazine did not lead to persistent side effects in maize plants, and that the technique could offer a safe tool for weed control without affecting crop growth.


Photosynthetica | 2015

Morphoanatomy and ecophysiology of tree seedlings in semideciduous forest during high-light acclimation in nursery

Anderson Kikuchi Calzavara; Edmilson Bianchini; T. Mazzanatti; Halley Caixeta Oliveira; Renata Stolf-Moreira; José Antonio Pimenta

The recomposition of deforested environments demands the acclimation of seedlings in nurseries. This process induces changes in physiological, anatomical, and morphological traits of plants, favouring their establishment after transplantation to the field. The present study aimed to verify the influence of full-sun acclimation on seedling hardiness. For the purpose, leaf gas-exchange, plant anatomical and morphological parameters of three tree species [Ceiba speciosa (A. St.-Hil.) Ravenna (Malvaceae), Croton floribundus Spreng. (Euphorbiaceae), and Cecropia pachystachya Trecul (Urticaceae)], which are used for reforestation in the Brazilian Atlantic biome, were evaluated. Seedlings were grown under 40% of total PPFD (shaded control) and under full sun (acclimated) for 168 days. The acclimation process induced a higher leaf production rate in C. speciosa and C. floribundus, whereas C. pachystachya seedlings replaced their leaves quickly, irrespective of the light conditions. The newly developed leaves of all three species presented a lower area and thicker palisade parenchyma, resulting in a reduced specific leaf area. The seedlings of C. speciosa and C. pachystachya showed increases in light-saturated net photosynthesis and transpiration rates, whereas water-use efficiency generally remained unchanged in all three species. The full-sun acclimated seedlings of C. pachystachya showed a reduced relative growth rate, lower height/stem diameter (H/D) and shoot to root dry mass ratios, characteristics that may result in greater physical resistance and ability for water and nutrient uptake to support the higher transpiratory demand under full sun. The reduction of the H/D ratio also occurred in the acclimated seedlings of C. speciosa. The seedlings of C. floribundus showed few changes during acclimation, but they did not seem to be affected by excessive light. In spite of the observed differences among the three species, all of them developed hardiness characteristics, mainly related to leaf anatomy, which should favour their establishment after transplantation to the field.


Plant Signaling & Behavior | 2013

Nitrite decreases ethanol production by intact soybean roots submitted to oxygen deficiency: a role for mitochondrial nitric oxide synthesis?

Halley Caixeta Oliveira; Ione Salgado; Ladaslav Sodek

Nitrate increases the tolerance of plants to hypoxia, although the mechanisms related to this beneficial effect are still unclear. Recently, we observed that cultivation of soybean plants with nitrate reduced hypoxic accumulation of fermentation end products by isolated root segments compared with the ammonium treatment. Interestingly, the same decrease in the intensity of fermentation was detected when ammonium-grown root segments were incubated with nitrite, suggesting the involvement of this anion in the nitrate-mediated modulation of fermentative metabolism. Here we extended these experiments to intact plants subjected to root hypoxia and observed similar effects of nitrate and nitrite in reducing root ethanol production, which indicates the physiological relevance of the in vitro results. In both experimental systems, nitrite stimulated nitric oxide emission by ammonium-grown roots to levels similar to that of nitrate-cultivated ones. The involvement of mitochondrial reduction of nitrite to nitric oxide in the root response to hypoxia is suggested.


Scientific Reports | 2017

Nanocapsules Containing Neem ( Azadirachta Indica ) Oil: Development, Characterization, And Toxicity Evaluation

Tatiane Pasquoto-Stigliani; Estefânia Vangelie Ramos Campos; Jhones L. Oliveira; Camila Moraes Gonçalves da Silva; Natalia Bilesky-José; Mariana Guilger; Johann Troost; Halley Caixeta Oliveira; Renata Stolf-Moreira; Leonardo Fernandes Fraceto; Renata de Lima

In this study, we prepared, characterized, and performed toxicity analyses of poly(ε-caprolactone) nanocapsules loaded with neem oil. Three formulations were prepared by the emulsion/solvent evaporation method. The nanocapsules showed a mean size distribution around 400 nm, with polydispersity below 0.2 and were stable for 120 days. Cytotoxicity and genotoxicity results showed an increase in toxicity of the oleic acid + neem formulations according to the amount of oleic acid used. The minimum inhibitory concentrations demonstrated that all the formulations containing neem oil were active. The nanocapsules containing neem oil did not affect the soil microbiota during 300 days of exposure compared to the control. Phytotoxicity studies indicated that NC_20 (200 mg of neem oil) did not affect the net photosynthesis and stomatal conductance of maize plants, whereas use of NC_10 (100:100 of neem:oleic acid) and NC_15 (150:50 of neem:oleic acid) led to negative effects on these physiological parameters. Hence, the use of oleic acid as a complement in the nanocapsules was not a good strategy, since the nanocapsules that only contained neem oil showed lower toxicity. These results demonstrate that evaluation of the toxicity of nanopesticides is essential for the development of environmentally friendly formulations intended for applications in agriculture.


Ecotoxicology and Environmental Safety | 2017

Evaluation of the effects of polymeric chitosan/tripolyphosphate and solid lipid nanoparticles on germination of Zea mays, Brassica rapa and Pisum sativum

Daniele Y. Nakasato; Anderson do Espirito Santo Pereira; Jhones L. Oliveira; Halley Caixeta Oliveira; Leonardo Fernandes Fraceto

Although the potential toxicity of many metallic and carbon nanoparticles to plants has been reported, few studies have evaluated the phytotoxic effects of polymeric and solid lipid nanoparticles. The present work described the preparation and characterization of chitosan/tripolyphosphate (CS/TPP) nanoparticles and solid lipid nanoparticles (SLN) and evaluated the effects of different concentrations of these nanoparticles on germination of Zea mays, Brassica rapa, and Pisum sativum. CS/TPP nanoparticles presented an average size of 233.6±12.1nm, polydispersity index (PDI) of 0.30±0.02, and zeta potential of +21.4±1.7mV. SLN showed an average size of 323.25±41.4nm, PDI of 0.23±0.103, and zeta potential of -13.25±3.2mV. Nanotracking analysis enabled determination of concentrations of 1.33×1010 (CS/TPP) and 3.64×1012 (SLN) nanoparticles per mL. At high concentrations, CS/TPP nanoparticles caused complete inhibition of germination, and thus negatively affected the initial growth of all tested species. Differently, SLN presented no phytotoxic effects. The different size and composition and the opposite charges of SLN and CS/TPP nanoparticles could be associated with the differential phytotoxicity of these nanomaterials. The present study reports the phytotoxic potential of polymeric CS/TPP nanoparticles towards plants, indicating that further investigation is needed on the effects of such formulations intended for future use in agricultural systems, in order to avoid damage to the environment.

Collaboration


Dive into the Halley Caixeta Oliveira's collaboration.

Top Co-Authors

Avatar

Renata Stolf-Moreira

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Edmilson Bianchini

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Ione Salgado

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

José Antonio Pimenta

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Anderson Kikuchi Calzavara

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amedea B. Seabra

Universidade Federal do ABC

View shared research outputs
Top Co-Authors

Avatar

Juliana Silva Rocha

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ladaslav Sodek

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge