Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haluk Ertan is active.

Publication


Featured researches published by Haluk Ertan.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The genomic basis of trophic strategy in marine bacteria

Federico M. Lauro; Diane McDougald; Torsten Thomas; Timothy J. Williams; Suhelen Egan; Scott A. Rice; Matthew Z. DeMaere; Lily Ting; Haluk Ertan; Justin Johnson; Steven Ferriera; Alla Lapidus; Iain Anderson; Nikos C. Kyrpides; A. Christine Munk; Chris Detter; Cliff Han; Mark V. Brown; Frank T. Robb; Staffan Kjelleberg; Ricardo Cavicchioli

Many marine bacteria have evolved to grow optimally at either high (copiotrophic) or low (oligotrophic) nutrient concentrations, enabling different species to colonize distinct trophic habitats in the oceans. Here, we compare the genome sequences of two bacteria, Photobacterium angustum S14 and Sphingopyxis alaskensis RB2256, that serve as useful model organisms for copiotrophic and oligotrophic modes of life and specifically relate the genomic features to trophic strategy for these organisms and define their molecular mechanisms of adaptation. We developed a model for predicting trophic lifestyle from genome sequence data and tested >400,000 proteins representing >500 million nucleotides of sequence data from 126 genome sequences with metagenome data of whole environmental samples. When applied to available oceanic metagenome data (e.g., the Global Ocean Survey data) the model demonstrated that oligotrophs, and not the more readily isolatable copiotrophs, dominate the oceans free-living microbial populations. Using our model, it is now possible to define the types of bacteria that specific ocean niches are capable of sustaining.


Microbial Biotechnology | 2011

Biotechnological uses of enzymes from psychrophiles

Ricardo Cavicchioli; Timothy S. Charlton; Haluk Ertan; S. Mohd Omar; Khawar Sohail Siddiqui; Timothy J. Williams

The bulk of the Earths biosphere is cold (e.g. 90% of the oceans waters are ≤ 5°C), sustaining a broad diversity of microbial life. The permanently cold environments vary from the deep ocean to alpine reaches and to polar regions. Commensurate with the extent and diversity of the ecosystems that harbour psychrophilic life, the functional capacity of the microorganisms that inhabitat the cold biosphere are equally diverse. As a result, indigenous psychrophilic microorganisms provide an enormous natural resource of enzymes that function effectively in the cold, and these cold‐adapted enzymes have been targeted for their biotechnological potential. In this review we describe the main properties of enzymes from psychrophiles and describe some of their known biotechnological applications and ways to potentially improve their value for biotechnology. The review also covers the use of metagenomics for enzyme screening, the development of psychrophilic gene expression systems and the use of enzymes for cleaning.


Molecular Microbiology | 2004

A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii

Amber Goodchild; Neil F. W. Saunders; Haluk Ertan; Mark J. Raftery; Michael Guilhaus; Paul M. G. Curmi; Ricardo Cavicchioli

A global view of the biology of the cold‐adapted archaeon Methanococcoides burtonii was achieved using proteomics. Proteins specific to growth at 4°C versus Topt (23°C) were identified by mass spectrometry using the draft genome sequence of M. burtonii. mRNA levels were determined for all genes identified by proteomics, and specific enzyme assays confirmed the protein expression results. Key aspects of cold adaptation related to transcription, protein folding and metabolism, including specific roles for RNA polymerase subunit E, a response regulator and peptidyl prolyl cis/trans isomerase. Heat shock protein DnaK was expressed during growth at Topt, indicating that growth at ‘optimal’ temperatures was stressful for this cold‐adapted organism. Expression of trimethylamine methyltransferase involves contiguous translation of two open reading frames, which is likely to result from incorporation of pyrrolysine at an amber stop codon. Thermal regulation in M. burtonii is achieved through complex gene expression events involving gene clusters and operons, through to protein modifications.


Engineering in Life Sciences | 2016

Lignocellulosic biomass: Biosynthesis, degradation, and industrial utilization

Gea Guerriero; Jean-Francois Hausman; Joseph Strauss; Haluk Ertan; Khawar Sohail Siddiqui

Lignocellulose biomass derived from plant cell walls is a rich source of biopolymers, chemicals, and sugars, besides being a sustainable alternative to petrochemicals. A natural armor protecting living protoplasts, the cell wall is currently the target of intense study because of its crucial importance in plant development, morphogenesis, and resistance to (a)biotic stresses. Beyond the intrinsic relevance related to the overall plant physiology, plant cell walls constitute an exquisite example of a natural composite material that is a constant source of inspiration for biotechnology, biofuel, and biomaterial industries. The aim of the present review is to provide the reader with an overview of the current knowledge concerning lignocellulosic biomass synthesis and degradation, by focusing on its three principal constituents, i.e. cellulose, hemicellulose (in particular xylan), and lignin. Furthermore, the current industrial exploitation of lignocellulose from fast growing fibre crops (such as hemp) is highlighted. We conclude this review by suggesting approaches for further research to fill gaps in our current knowledge and to highlight the potential of biotechnology and bioengineering in improving both biomass biosynthesis and degradation.


Environmental Microbiology | 2011

Defining the response of a microorganism to temperatures that span its complete growth temperature range (−2°C to 28°C) using multiplex quantitative proteomics

Timothy J. Williams; Federico M. Lauro; Haluk Ertan; Dominic Burg; Anne Poljak; Mark J. Raftery; Ricardo Cavicchioli

The growth of all microorganisms is limited to a specific temperature range. However, it has not previously been determined to what extent global protein profiles change in response to temperatures that incrementally span the complete growth temperature range of a microorganism. As a result it has remained unclear to what extent cellular processes (inferred from protein abundance profiles) are affected by growth temperature and which, in particular, constrain growth at upper and lower temperature limits. To evaluate this, 8-plex iTRAQ proteomics was performed on the Antarctic microorganism, Methanococcoides burtonii. Methanococcoides burtonii was chosen due to its importance as a model psychrophilic (cold-adapted) member of the Archaea, and the fact that proteomic methods, including subcellular fractionation procedures, have been well developed. Differential abundance patterns were obtained for cells grown at seven different growth temperatures (-2°C, 1°C, 4°C, 10°C, 16°C, 23°C, 28°C) and a principal component analysis (PCA) was performed to identify trends in protein abundances. The multiplex analysis enabled three largely distinct physiological states to be described: cold stress (-2°C), cold adaptation (1°C, 4°C, 10°C and 16°C), and heat stress (23°C and 28°C). A particular feature of the thermal extremes was the synthesis of heat- and cold-specific stress proteins, reflecting the important, yet distinct ways in which temperature-induced stress manifests in the cell. This is the first quantitative proteomic investigation to simultaneously assess the response of a microorganism to numerous growth temperatures, including the upper and lower growth temperatures limits, and has revealed a new level of understanding about cellular adaptive responses.


Frontiers in Microbiology | 2016

Organohalide Respiring Bacteria and Reductive Dehalogenases: Key Tools in Organohalide Bioremediation

Bat-Erdene Jugder; Haluk Ertan; Susanne Bohl; Matthew Lee; Christopher P. Marquis; Mike Manefield

Organohalides are recalcitrant pollutants that have been responsible for substantial contamination of soils and groundwater. Organohalide-respiring bacteria (ORB) provide a potential solution to remediate contaminated sites, through their ability to use organohalides as terminal electron acceptors to yield energy for growth (i.e., organohalide respiration). Ideally, this process results in non- or lesser-halogenated compounds that are mostly less toxic to the environment or more easily degraded. At the heart of these processes are reductive dehalogenases (RDases), which are membrane bound enzymes coupled with other components that facilitate dehalogenation of organohalides to generate cellular energy. This review focuses on RDases, concentrating on those which have been purified (partially or wholly) and functionally characterized. Further, the paper reviews the major bacteria involved in organohalide breakdown and the evidence for microbial evolution of RDases. Finally, the capacity for using ORB in a bioremediation and bioaugmentation capacity are discussed.


Applied Microbiology and Biotechnology | 1997

Stabilization of Escherichia coli penicillin G acylase against thermal inactivation by cross-linking with dextran dialdehyde polymers

Dilek Kazan; Haluk Ertan; A. Erarslan

Abstract The thermostabilization of penicillin G acylase (PGA) obtained from a mutant of Escherichia coli ATCC 11105 by cross-linking with dextran dialdehyde molecules, at a molecular mass of 11 500, 37 700 and 71 000 Da, was studied. The thermal inactivation mechanisms of the native and modified PGA were both considered to obey first-order inactivation kinetics during prolonged heat treatment, forming fully active but temperature-sensitive transient states. The highest enhancement to the thermostability of PGA was obtained using dextran-71000-dialdehyde modification, as a␣nearly ninefold increase at temperatures above 50 °C. The modification of PGA by dextran-11500-dialdehyde resulted in a considerable reduction of the Vm and Km parameters of the enzyme. However, other dextran dialdehyde derivatives used for modification did not cause a meaningful change in either Vm and Km. Modification by dextran dialdehyde derivatives did not result in significant change to either the optimal temperature or the activation energy of PGA. All modified PGA preparations showed lower inactivation rate constants but higher half-lives for inactivation than those of the native PGA at all temperatures studied. As indicated by the half-life times and ki values, dextran 71000-dialdehyde was found to be more effective at cross-linking in the thermo-stabilization of PGA than any other agent studied in this work.


Plant Science | 2015

Destructuring plant biomass: Focus on fungal and extremophilic cell wall hydrolases

Gea Guerriero; Jean-Francois Hausman; Joseph Strauss; Haluk Ertan; Khawar Sohail Siddiqui

The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocallimastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification.


Archives of Microbiology | 1992

Some properties of glutamate dehydrogenase, glutamine synthetase and glutamate synthase from Corynebacterium callunae

Haluk Ertan

Characteristics of the three major ammonia assimilatory enzymes, glutamate dehydrogenase (GDH), glutamine synthetase (GS) and glutamate synthase (GOGAT) in Corynebacterium callunae (NCIB 10338) were examined. The GDH of C. callunae specifically required NADPH and NADP+ as coenzymes in the amination and deamination reactions, respectively. This enzyme showed a marked specificity for α-ketoglutarate and glutamate as substrates. The optimum pH was 7.2 for NADPH-GDH activity (amination) and 9.0 for NADP+-GDH activity (deamination). The results showed that NADPH-GDH and NADP+-GDH activities were controlled primarily by product inhibition and that the feedback effectors alanine and valine played a minor role in the control of NADPH-GDH activity. The transferase activity of GS was dependent on Mn+2 while the biosynthetic activity of the enzyme was dependent on Mg2+ as essential activators. The pH optima for transferase and biosynthetic activities were 8.0 and 7.0, respectively. In the transfer reaction, the Km values were 15.2 mM for glutamine, 1.46 mM for hydroxylamine, 3.5×10-3 mM for ADP and 1.03 mM for arsenate. Feedback inhibition by alanine, glycine and serine was also found to play an important role in controlling GS activity. In addition, the enzyme activity was sensitive to ATP. The transferase activity of the enzyme was responsive to ionic strength as well as the specific monovalent cation present. GOGAT of C. callunae utilized either NADPH or NADH as coenzymes, although the latter was less effective. The enzyme specifically required α-ketoglutarate and glutamine as substrates. In cells grown in a medium with glutamate as the nitrogen source, the optimum pH was 7.6 for NADPH-GOGAT activity and 6.8 for NADH-GOGAT activity. Findings showed that NADPH-GOGAT and NADH-GOGAT activities were controlled by product inhibition caused by NADP+ and NAD+, respectively, and that ATP also had an important role in the control of NADPH-GOGAT activity. Both activities of GOGAT were found to be inhibited by azaserine.


Trends in Biotechnology | 2015

Reductive Dehalogenases Come of Age in Biological Destruction of Organohalides

Bat-Erdene Jugder; Haluk Ertan; Matthew Lee; Mike Manefield; Christopher P. Marquis

Halogenated organic compounds (organohalides) are globally prevalent, recalcitrant toxic, and carcinogenic environmental pollutants. Select microorganisms encode enzymes known as reductive dehalogenases (EC 1.97.1.8) that catalyze reductive dehalogenation reactions resulting in the generation of lesser-halogenated compounds that may be less toxic and more biodegradable. Recent breakthroughs in enzyme structure determination, elucidation of the mechanisms of reductive dehalogenation, and in heterologous expression of functional reductive dehalogenase enzymes have substantially increased our understanding of this fascinating class of enzymes. This knowledge has created opportunities for more versatile (in situ and ex situ) biologically-mediated organohalide destruction strategies.

Collaboration


Dive into the Haluk Ertan's collaboration.

Top Co-Authors

Avatar

Ricardo Cavicchioli

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Khawar Sohail Siddiqui

King Fahd University of Petroleum and Minerals

View shared research outputs
Top Co-Authors

Avatar

Matthew Lee

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Mike Manefield

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Williams

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Anne Poljak

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bat-Erdene Jugder

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge