Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haluk Topaloglu is active.

Publication


Featured researches published by Haluk Topaloglu.


Developmental Cell | 2001

Muscular Dystrophy and Neuronal Migration Disorder Caused by Mutations in a Glycosyltransferase, POMGnT1

Aruto Yoshida; Kazuhiro Kobayashi; Hiroshi Manya; Kiyomi Taniguchi; Hiroki Kano; Mamoru Mizuno; Toshiyuki Inazu; Hideyo Mitsuhashi; Seiichiro Takahashi; Makoto Takeuchi; Ralf Herrmann; Volker Straub; Beril Talim; Thomas Voit; Haluk Topaloglu; Tatsushi Toda; Tamao Endo

Muscle-eye-brain disease (MEB) is an autosomal recessive disorder characterized by congenital muscular dystrophy, ocular abnormalities, and lissencephaly. Mammalian O-mannosyl glycosylation is a rare type of protein modification that is observed in a limited number of glycoproteins of brain, nerve, and skeletal muscle. Here we isolated a human cDNA for protein O-mannose beta-1,2-N-acetylglucosaminyltransferase (POMGnT1), which participates in O-mannosyl glycan synthesis. We also identified six independent mutations of the POMGnT1 gene in six patients with MEB. Expression of most frequent mutation revealed a great loss of the enzymatic activity. These findings suggest that interference in O-mannosyl glycosylation is a new pathomechanism for muscular dystrophy as well as neuronal migration disorder.


Nature Genetics | 2000

The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy

Pascale Bomont; Laurent Cavalier; François Blondeau; Christiane Ben Hamida; S. Belal; Meriem Tazir; Ercan Demir; Haluk Topaloglu; Rudolf Korinthenberg; Beyhan Tüysüz; Pierre Landrieu; F. Hentati; Michel Koenig

Disorganization of the neurofilament network is a prominent feature of several neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), infantile spinal muscular atrophy and axonal Charcot-Marie-Tooth disease. Giant axonal neuropathy (GAN, MIM 256850), a severe, autosomal recessive sensorimotor neuropathy affecting both the peripheral nerves and the central nervous system, is characterized by neurofilament accumulation, leading to segmental distension of the axons. GAN corresponds to a generalized disorganization of the cytoskeletal intermediate filaments (IFs), to which neurofilaments belong, as abnormal aggregation of multiple tissue-specific IFs has been reported: vimentin in endothelial cells, Schwann cells and cultured skin fibroblasts, and glial fibrillary acidic protein (GFAP) in astrocytes. Keratin IFs also seem to be alterated, as most patients present characteristic curly or kinky hairs. We report here identification of the gene GAN, which encodes a novel, ubiquitously expressed protein we have named gigaxonin. We found one frameshift, four nonsense and nine missense mutations in GAN of GAN patients. Gigaxonin is composed of an amino-terminal BTB (for Broad-Complex, Tramtrack and Bric a brac) domain followed by a six kelch repeats, which are predicted to adopt a β-propeller shape. Distantly related proteins sharing a similar domain organization have various functions associated with the cytoskeleton, predicting that gigaxonin is a novel and distinct cytoskeletal protein that may represent a general pathological target for other neurodegenerative disorders with alterations in the neurofilament network.


Nature Genetics | 2001

Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome.

Behzad Moghadaszadeh; Nathalie Petit; Céline Jaillard; Martin Brockington; Susana Quijano Roy; Luciano Merlini; Norma B. Romero; Brigitte Estournet; Isabelle Desguerre; Denys Chaigne; Francesco Muntoni; Haluk Topaloglu; Pascale Guicheney

One form of congenital muscular dystrophy, rigid spine syndrome (MIM 602771), is a rare neuromuscular disorder characterized by early rigidity of the spine and respiratory insufficiency. A locus on 1p35–36 (RSMD1) was recently found to segregate with rigid spine muscular dystrophy 1 (ref. 1). Here we refine the locus and find evidence of linkage disequilibrium associated with SEPN1, which encodes the recently described selenoprotein N (ref. 2). Our identification and analysis of mutations in SEPN1 is the first description of a selenoprotein implicated in a human disease.


Nature Genetics | 2000

Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia).

Sophie Nicole; Claire-Sophie Davoine; Haluk Topaloglu; Laurence Cattolico; Duarte C. Barral; Peter Beighton; Christiane Ben Hamida; Hadi Hammouda; Corinne Cruaud; Peter S. White; Delphine Samson; J. Andoni Urtizberea; Franck Lehmann-Horn; Jean Weissenbach; F. Hentati; Bertrand Fontaine

Schwartz-Jampel syndrome (SJS1) is a rare autosomal recessive disorder characterized by permanent myotonia (prolonged failure of muscle relaxation) and skeletal dysplasia, resulting in reduced stature, kyphoscoliosis, bowing of the diaphyses and irregular epiphyses. Electromyographic investigations reveal repetitive muscle discharges, which may originate from both neurogenic and myogenic alterations. We previously localized the SJS1 locus to chromosome 1p34–p36.1 and found no evidence of genetic heterogeneity. Here we describe mutations, including missense and splicing mutations, of the gene encoding perlecan (HSPG2) in three SJS1 families. In so doing, we have identified the first human mutations in HSPG2, which underscore the importance of perlecan not only in maintaining cartilage integrity but also in regulating muscle excitability.


American Journal of Human Genetics | 2004

Mutations in the Gene Encoding Gap Junction Protein α12 (Connexin 46.6) Cause Pelizaeus-Merzbacher–Like Disease

Birgit Uhlenberg; Markus Schuelke; Franz Rüschendorf; Nico Ruf; Angela M. Kaindl; Marco Henneke; Holger Thiele; Gisela Stoltenburg-Didinger; Fuat Aksu; Haluk Topaloglu; Peter Nürnberg; Christoph Hübner; Bernhard Weschke; Jutta Gärtner

The hypomyelinating leukodystrophies X-linked Pelizaeus-Merzbacher disease (PMD) and Pelizaeus-Merzbacher-like disease (PMLD) are characterized by nystagmus, progressive spasticity, and ataxia. In a consanguineous family with PMLD, we performed a genomewide linkage scan using the GeneChip Mapping EA 10K Array (Affymetrix) and detected a single gene locus on chromosome 1q41-q42. This region harbors the GJA12 gene, which encodes gap junction protein alpha 12 (or connexin 46.6). Gap junction proteins assemble into intercellular channels through which signaling ions and small molecules are exchanged. GJA12 is highly expressed in oligodendrocytes, and, therefore, it serves as an excellent candidate for hypomyelination in PMLD. In three of six families with PMLD, we detected five different GJA12 mutations, including missense, nonsense, and frameshift mutations. We thereby confirm previous assumptions that PMLD is genetically heterogeneous. Although the murine Gja12 ortholog is not expressed in sciatic nerve, we did detect GJA12 transcripts in human sciatic and sural nerve tissue by reverse-transcriptase polymerase chain reaction. These results are in accordance with the electrophysiological finding of reduced motor and sensory nerve conduction velocities in patients with PMLD, which argues for a demyelinating neuropathy. In this study, we demonstrate that GJA12 plays a key role in central myelination and is involved in peripheral myelination in humans.


The New England Journal of Medicine | 2011

A Dystroglycan Mutation Associated with Limb-Girdle Muscular Dystrophy

Yuji Hara; Burcu Balci-Hayta; Takako Yoshida-Moriguchi; Motoi Kanagawa; Daniel Beltrán-Valero de Bernabé; Hulya Gundesli; Tobias Willer; Jakob S. Satz; Robert W. Crawford; Steven J. Burden; Stefan Kunz; Michael B. A. Oldstone; Alessio Accardi; Beril Talim; Francesco Muntoni; Haluk Topaloglu; Pervin Dinçer; Kevin P. Campbell

Dystroglycan, which serves as a major extracellular matrix receptor in muscle and the central nervous system, requires extensive O-glycosylation to function. We identified a dystroglycan missense mutation (Thr192→Met) in a woman with limb-girdle muscular dystrophy and cognitive impairment. A mouse model harboring this mutation recapitulates the immunohistochemical and neuromuscular abnormalities observed in the patient. In vitro and in vivo studies showed that the mutation impairs the receptor function of dystroglycan in skeletal muscle and brain by inhibiting the post-translational modification, mediated by the glycosyltransferase LARGE, of the phosphorylated O-mannosyl glycans on α-dystroglycan that is required for high-affinity binding to laminin.


Nature Genetics | 2005

Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy

Jan Senderek; M. Krieger; Claudia Stendel; Carsten Bergmann; Markus Moser; N. Breitbach-Faller; Sabine Rudnik-Schöneborn; A. Blaschek; N. I. Wolf; I. Harting; Kathryn N. North; Janine Smith; Francesco Muntoni; Martin Brockington; Susana Quijano-Roy; F. Renault; Ralf Herrmann; L. M. Hendershot; J. M. Schroder; Hanns Lochmüller; Haluk Topaloglu; Thomas Voit; Joachim Weis; F. Ebinger; Klaus Zerres

SIL1 (also called BAP) acts as a nucleotide exchange factor for the Hsp70 chaperone BiP (also called GRP78), which is a key regulator of the main functions of the endoplasmic reticulum. We found nine distinct mutations that would disrupt the SIL1 protein in individuals with Marinesco-Sjögren syndrome, an autosomal recessive cerebellar ataxia complicated by cataracts, developmental delay and myopathy. Identification of SIL1 mutations implicates Marinesco-Sjögren syndrome as a disease of endoplasmic reticulum dysfunction and suggests a role for this organelle in multisystem disorders.


Science | 2013

Deciphering the Glycosylome of Dystroglycanopathies Using Haploid Screens for Lassa Virus Entry

Lucas T. Jae; Matthijs Raaben; Moniek Riemersma; Ellen van Beusekom; Vincent A. Blomen; Arno Velds; Ron M. Kerkhoven; Jan E. Carette; Haluk Topaloglu; Peter Meinecke; Marja W. Wessels; Dirk J. Lefeber; Sean P. J. Whelan; Hans van Bokhoven; Thijn R. Brummelkamp

Viruses and Congenital Disorders Mutations in genes involved in α-dystroglycan O-linked glycosylation result in posttranslation modifications associated with the congenital disease Walker-Warburg syndrome (WWS). This cellular modification is also required for efficient Lassa virus infection of cells. Jae et al. (p. 479, published online 21 March) screened for genes involved in O-glycosylation that affected Lassa virus infection and identified candidates involved in glycosylation. Individuals from different pedigrees exhibiting WWS had unique mutations among genes identified in the genetic screen. Thus, comprehensive forward genetic screens can be used to define the genetic architecture of a complex disease. Deficiencies in the glycosylation of α-dystroglycan interfere with Lassa virus entry and link to Walker-Warburg syndrome Glycosylated α-dystroglycan (α-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate α-DG, but many genes mutated in WWS remain unknown. To identify modifiers of α-DG, we performed a haploid screen for Lassa virus entry, a hemorrhagic fever virus causing thousands of deaths annually that hijacks glycosylated α-DG to enter cells. In complementary screens, we profiled cells for absence of α-DG carbohydrate chains or biochemically related glycans. This revealed virus host factors and a suite of glycosylation units, including all known Walker-Warburg genes and five additional factors critical for the modification of α-DG. Our findings accentuate the complexity of this posttranslational feature and point out genes defective in dystroglycanopathies.


American Journal of Human Genetics | 1999

Calpainopathy-a survey of mutations and polymorphisms.

Isabelle Richard; Carinne Roudaut; A. Sáenz; R. Pogue; J.E.M.A. Grimbergen; Louise V. B. Anderson; C. Beley; A-M. Cobo; C. de Diego; Bruno Eymard; P. Gallano; H.B. Ginjaar; Adriana Lasa; C. Pollitt; Haluk Topaloglu; J.A. Urtizberea; M. de Visser; A.J. van der Kooi; Kate Bushby; Egbert Bakker; A. López de Munain; Michel Fardeau; Jacques S. Beckmann

Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder characterized mainly by symmetrical and selective atrophy of the proximal limb muscles. It derives from defects in the human CAPN3 gene, which encodes the skeletal muscle-specific member of the calpain family. This report represents a compilation of the mutations and variants identified so far in this gene. To date, 97 distinct pathogenic calpain 3 mutations have been identified (4 nonsense mutations, 32 deletions/insertions, 8 splice-site mutations, and 53 missense mutations), 56 of which have not been described previously, together with 12 polymorphisms and 5 nonclassified variants. The mutations are distributed along the entire length of the CAPN3 gene. Thus far, most mutations identified represent private variants, although particular mutations have been found more frequently. Knowledge of the mutation spectrum occurring in the CAPN3 gene may contribute significantly to structure/function and pathogenesis studies. It may also help in the design of efficient mutation-screening strategies for calpainopathies.


American Journal of Human Genetics | 2003

Mutations in a Gene Encoding a Novel SH3/TPR Domain Protein Cause Autosomal Recessive Charcot-Marie-Tooth Type 4C Neuropathy

Jan Senderek; Carsten Bergmann; Claudia Stendel; Jutta Kirfel; Nathalie Verpoorten; Vincent Timmerman; Roman Chrast; Mark H. G. Verheijen; Greg Lemke; Esra Battaloglu; Yesim Parman; Sevim Erdem; Ersin Tan; Haluk Topaloglu; Andreas Hahn; Wolfgang Müller-Felber; N. Rizzuto; Gian Maria Fabrizi; Manfred Stuhrmann; Sabine Rudnik-Schöneborn; Stephan Züchner; J. Michael Schröder; Eckhard Buchheim; Volker Straub; Jörg Klepper; Kathrin Huehne; Bernd Rautenstrauss; Reinhard Büttner; Eva Nelis; Klaus Zerres

Charcot-Marie-Tooth disease type 4C (CMT4C) is a childhood-onset demyelinating form of hereditary motor and sensory neuropathy associated with an early-onset scoliosis and a distinct Schwann cell pathology. CMT4C is inherited as an autosomal recessive trait and has been mapped to a 13-cM linkage interval on chromosome 5q23-q33. By homozygosity mapping and allele-sharing analysis, we refined the CMT4C locus to a suggestive critical region of 1.7 Mb. We subsequently identified mutations in an uncharacterized transcript, KIAA1985, in 12 families with autosomal recessive neuropathy. We observed eight distinct protein-truncating mutations and three nonconservative missense mutations affecting amino acids conserved through evolution. In all families, we identified a mutation on each disease allele, either in the homozygous or in the compound heterozygous state. The CMT4C gene is strongly expressed in neural tissues, including peripheral nerve tissue. The translated protein defines a new protein family of unknown function with putative orthologues in vertebrates. Comparative sequence alignments indicate that members of this protein family contain multiple SH3 and TPR domains that are likely involved in the formation of protein complexes.

Collaboration


Dive into the Haluk Topaloglu's collaboration.

Top Co-Authors

Avatar

Beril Talim

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Muntoni

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Haliloglu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Thomas Voit

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge