Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hamed Karimian is active.

Publication


Featured researches published by Hamed Karimian.


The Scientific World Journal | 2014

Anticancer and Antitumor Potential of Fucoidan and Fucoxanthin, Two Main Metabolites Isolated from Brown Algae

Soheil Zorofchian Moghadamtousi; Hamed Karimian; Ramin Khanabdali; Mahboubeh Razavi; Mohammad Firoozinia; Keivan Zandi; Habsah Abdul Kadir

Seaweed is one of the largest producers of biomass in marine environment and is a rich arsenal of active metabolites and functional ingredients with valuable beneficial health effects. Being a staple part of Asian cuisine, investigations on the crude extracts of Phaeophyceae or brown algae revealed marked antitumor activity, eliciting a variety of research to determine the active ingredients involved in this potential. The sulfated polysaccharide of fucoidan and carotenoid of fucoxanthin were found to be the most important active metabolites of brown algae as potential chemotherapeutic or chemopreventive agents. This review strives to provide detailed account of all current knowledge on the anticancer and antitumor activity of fucoidan and fucoxanthin as the two major metabolites isolated from brown algae.


Drug Design Development and Therapy | 2014

Gastroprotective activity of Annona muricata leaves against ethanol-induced gastric injury in rats via Hsp70/Bax involvement

Soheil Zorofchian Moghadamtousi; Elham Rouhollahi; Hamed Karimian; Mehran Fadaeinasab; Mahmood Ameen Abdulla; Habsah Abdul Kadir

The popular fruit tree of Annona muricata L. (Annonaceae), known as soursop and graviola, is a widely distributed plant in Central and South America and tropical countries. Leaves of A. muricata have been reported to possess antioxidant and anti-inflammatory activities. In this study, the gastroprotective effects of ethyl acetate extract of A. muricata leaves (EEAM) were investigated against ethanol-induced gastric injury models in rats. The acute toxicity test of EEAM in rats, carried out in two doses of 1 g/kg and 2 g/kg, showed the safety of this plant, even at the highest dose of 2 g/kg. The antiulcer study in rats (five groups, n=6) was performed with two doses of EEAM (200 mg/kg and 400 mg/kg) and with omeprazole (20 mg/kg), as a standard antiulcer drug. Gross and histological features showed the antiulcerogenic characterizations of EEAM. There was significant suppression on the ulcer lesion index of rats pretreated with EEAM, which was comparable to the omeprazole effect in the omeprazole control group. Oral administration of EEAM to rats caused a significant increase in the level of nitric oxide and antioxidant activities, including catalase, glutathione, and superoxide dismutase associated with attenuation in gastric acidity, and compensatory effect on the loss of gastric wall mucus. In addition, pretreatment of rats with EEAM caused significant reduction in the level of malondialdehyde, as a marker for oxidative stress, associated with an increase in prostaglandin E2 activity. Immunohistochemical staining also demonstrated that EEAM induced the downregulation of Bax and upregulation of Hsp70 proteins after pretreatment. Collectively, the present results suggest that EEAM has a promising antiulcer potential, which could be attributed to its suppressive effect against oxidative damage and preservative effect toward gastric wall mucus.


The Scientific World Journal | 2014

A Schiff Base-Derived Copper (II) Complex Is a Potent Inducer of Apoptosis in Colon Cancer Cells by Activating the Intrinsic Pathway.

Maryam Hajrezaie; Mohammadjavad Paydar; Soheil Zorofchian Moghadamtousi; Pouya Hassandarvish; Nura Suleiman Gwaram; Maryam Zahedifard; Elham Rouhollahi; Hamed Karimian; Chung Yeng Looi; Hapipah Mohd Ali; Nazia Abdul Majid; Mahmood Ameen Abdulla

Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87 μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25 μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.


PLOS ONE | 2015

The Chemopotential Effect of Annona muricata Leaves against Azoxymethane-Induced Colonic Aberrant Crypt Foci in Rats and the Apoptotic Effect of Acetogenin Annomuricin E in HT-29 Cells: A Bioassay-Guided Approach

Soheil Zorofchian Moghadamtousi; Elham Rouhollahi; Hamed Karimian; Mehran Fadaeinasab; Mohammad Firoozinia; Mahmood Ameen Abdulla; Habsah Abdul Kadir

Annona muricata has been used in folk medicine for the treatment of cancer and tumors. This study evaluated the chemopreventive properties of an ethyl acetate extract of A. muricata leaves (EEAML) on azoxymethane-induced colonic aberrant crypt foci (ACF) in rats. Moreover, the cytotoxic compound of EEAML (Annomuricin E) was isolated, and its apoptosis-inducing effect was investigated against HT-29 colon cancer cell line using a bioassay-guided approach. This experiment was performed on five groups of rats: negative control, cancer control, EEAML (250 mg/kg), EEAML (500 mg/kg) and positive control (5-fluorouracil). Methylene blue staining of colorectal specimens showed that application of EEAML at both doses significantly reduced the colonic ACF formation compared with the cancer control group. Immunohistochemistry analysis showed the down-regulation of PCNA and Bcl-2 proteins and the up-regulation of Bax protein after administration of EEAML compared with the cancer control group. In addition, an increase in the levels of enzymatic antioxidants and a decrease in the malondialdehyde level of the colon tissue homogenates were observed, suggesting the suppression of lipid peroxidation. Annomuricin E inhibited the growth of HT-29 cells with an IC50 value of 1.62 ± 0.24 μg/ml after 48 h. The cytotoxic effect of annomuricin E was further substantiated by G1 cell cycle arrest and early apoptosis induction in HT-29 cells. Annomuricin E triggered mitochondria-initiated events, including the dissipation of the mitochondrial membrane potential and the leakage of cytochrome c from the mitochondria. Prior to these events, annomuricin E activated caspase 3/7 and caspase 9. Upstream, annomuricin E induced a time-dependent upregulation of Bax and downregulation of Bcl-2 at the mRNA and protein levels. In conclusion, these findings substantiate the usage of A. muricata leaves in ethnomedicine against cancer and highlight annomuricin E as one of the contributing compounds in the anticancer activity of A. muricata leaves.


PLOS ONE | 2014

Chemopreventive evaluation of a Schiff base derived copper (II) complex against azoxymethane-induced colorectal cancer in rats.

Maryam Hajrezaie; Pouya Hassandarvish; Soheil Zorofchian Moghadamtousi; Nura Suleiman Gwaram; Shahram Golbabapour; Abdrabuh NajiHussien; Amel Abdullah Almagrami; Maryam Zahedifard; Elham Rouhollahi; Hamed Karimian; Somaye Fani; Behnam Kamalidehghan; Nazia Abdul Majid; Hapipah Mohd Ali; Mahmood Ameen Abdulla

Background Based on the potential of Schiff base compounds to act as sources for the development of cancer chemotherapeutic agents, this in vivo study was performed to investigate the inhibitory properties of the synthetic Schiff base compound Cu(BrHAP)2 on colonic aberrant crypt foci (ACF). Methodology This study involved five groups of male rats. The negative control group was injected with normal saline once a week for 2 weeks and fed 10% Tween 20 for 10 weeks, the cancer control group was subcutaneously injected with 15 mg/kg azoxymethane once per week for two consecutive weeks, the positive control group was injected with 15 mg/kg azoxymethane once per week for two consecutive weeks and 35 mg/kg 5-fluorouracil (injected intra-peritoneally) for 4 weeks, and the experimental groups were first injected with 15 mg/kg azoxymethane once per week for two consecutive weeks and then fed 2.5 or 5 mg/kg of the Schiff base compound once a day for 10 weeks. Application of the Schiff base compound suppressed total colonic ACF formation by up to 72% to 74% (P<0.05) when compared with the cancer control group. Analysis of colorectal specimens revealed that treatments with the Schiff base compound decreased the mean crypt scores in azoxymethane-treated rats. Significant elevations of superoxide dismutase, glutathione peroxidase and catalase activities and a reduction in the level of malondialdehyde were also observed. Histologically, all treatment groups exhibited significant decreases in dysplasia compared to the cancer control group (P<0.05). Immunohistochemical staining demonstrated down-regulation of the PCNA protein. Comparative western blot analysis revealed that COX-2 and Bcl2 were up-regulated and Bax was down-regulated compared with the AOM control group. Conclusion The current study demonstrated that the Cu(BrHAP)2 compound has promising chemoprotective activities that are evidenced by significant decreases in the numbers of ACFs in azoxymethane-induced colon cancer.


Clinics | 2015

Glutamine treatment attenuates hyperglycemia-induced mitochondrial stress and apoptosis in umbilical vein endothelial cells

Sher Zaman Safi; Kalaivani Batumalaie; Marzida Mansor; Karuthan Chinna; Syam Mohan; Hamed Karimian; Rajes Qvist; Muhammad Ashraf; Garcie Ong Siok Yan

OBJECTIVE: The aim of this study was to determine the in vitro effect of glutamine and insulin on apoptosis, mitochondrial membrane potential, cell permeability, and inflammatory cytokines in hyperglycemic umbilical vein endothelial cells. MATERIALS AND METHODS: Human umbilical vein endothelial cells were grown and subjected to glutamine and insulin to examine the effects of these agents on the hyperglycemic state. Mitochondrial function and the production of inflammatory cytokines were assessed using fluorescence analysis and multiple cytotoxicity assays. Apoptosis was analyzed by the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. RESULTS: Glutamine maintains the integrity of the mitochondria by reducing the cell permeability and cytochrome c levels and increasing the mitochondrial membrane potential. The cytochrome c level was significantly (p<0.005) reduced when the cells were treated with glutamine. An apoptosis assay revealed significantly reduced apoptosis (p<0.005) in the glutamine-treated cells. Moreover, glutamine alone or in combination with insulin modulated inflammatory cytokine levels. Interleukin-10, interleukin-6, and vascular endothelial growth factor were up-regulated while tumor necrosis factor-α was down-regulated after treatment with glutamine. CONCLUSIONS: Glutamine, either alone or in combination with insulin, can positively modulate the mitochondrial stress and cell permeability in umbilical vein endothelial cells. Glutamine regulates the expression of inflammatory cytokines and maintains the balance of the mitochondria in a cytoprotective manner.


PLOS ONE | 2014

Anti-ulcerogenic effect of methanolic extracts from Enicosanthellum pulchrum (King) Heusden against ethanol-induced acute gastric lesion in animal models.

Noraziah Nordin; Suzy M. Salama; Shahram Golbabapour; Maryam Hajrezaie; Pouya Hassandarvish; Behnam Kamalidehghan; Nazia Abdul Majid; Najihah Mohd Hashim; Hanita Omar; Mehran Fadaienasab; Hamed Karimian; Hairin Taha; Hapipah Mohd Ali; Mahmood Ameen Abdulla

A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2–7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4–7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol.


Scientific Reports | 2015

Apoptotic effect of novel Schiff Based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells

Maryam Hajrezaie; Mohammadjavad Paydar; Chung Yeng Looi; Soheil Zorofchian Moghadamtousi; Pouya Hassandarvish; Muhammad Saleh Salga; Hamed Karimian; Keivan Shams; Maryam Zahedifard; Nazia Abdul Majid; Hapipah Mohd Ali; Mahmood Ameen Abdulla

The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies.


PLOS ONE | 2015

Biochanin A Gastroprotective Effects in Ethanol-Induced Gastric Mucosal Ulceration in Rats

Maryam Hajrezaie; Nur’ain Salehen; Hamed Karimian; Maryam Zahedifard; Keivan Shams; Rami Al Batran; Nazia Abdul Majid; Shaden A. M. Khalifa; Hapipah Mohd Ali; Hesham R. El-Seedi; Mahmood Ameen Abdulla

Background Biochanin A notable bioactive compound which is found in so many traditional medicinal plant. In vivo study was conducted to assess the protective effect of biochanin A on the gastric wall of Spraguedawley rats` stomachs. Methodology The experimental set included different animal groups. Specifically, four groups with gastric mucosal lesions were receiving either a) Ulcer control group treated with absolute ethanol (5 ml/kg), b) 20 mg/kg of omeprazole as reference group, c) 25 of biochanin A, d) 50 mg/kg of biochanin A. Histopathological sectioning followed by immunohistochemistry staining were undertaken to evaluate the influence of the different treatments on gastric wall mucosal layer. The gastric secretions were collected in the form of homogenate and exposed to superoxide dismutase (SOD) and nitric oxide enzyme (NO) and the level of malondialdehyde (MDA) and protein content were measured. Ulceration and patchy haemorrhage were clearly observed by light microscopy. The morphology of the gastric wall as confirmed by immunohistochemistry and fluorescent microscopic observations, exhibited sever deformity with notable thickness, oedematous and complete loss of the mucosal coverage however the biochanin-pretreated animals, similar to the omeprazole-pretreated animals, showed less damage compared to the ulcer control group. Moreover, up-regulation of Hsp70 protein and down-regulation of Bax protein were detected in the biochanin A pre-treated groups and the gastric glandular mucosa was positively stained with Periodic Acid Schiff (PAS) staining and the Leucocytes infiltration was commonly seen. Biochanin A displayed a great increase in SOD and NO levels and decreased the release of MDA. Conclusions This gastroprotective effect of biochanin A could be attributed to the enhancement of cellular metabolic cycles perceived as an increase in the SOD, NO activity, and decrease in the level of MDA, and also decrease in level of Bax expression and increase the Hsp70 expression level.


Journal of Experimental & Clinical Cancer Research | 2015

Forkhead Box Transcription Factor (FOXO3a) mediates the cytotoxic effect of vernodalin in vitro and inhibits the breast tumor growth in vivo

Suresh Kumar Ananda Sadagopan; Nooshin Mohebali; Chung Yeng Looi; Mohadeseh Hasanpourghadi; Ashok Kumar Pandurangan; Aditya Arya; Hamed Karimian; Mohd Rais Mustafa

BackgroundNatural compounds have been demonstrated to lower breast cancer risk and sensitize tumor cells to anticancer therapies. Recently, we demonstrated that vernodalin (the active constituent of the medicinal herb Centratherum anthelminticum seeds) induces apoptosis in breast cancer cell-lines. The aim of this work was to gain an insight into the underlying anticancer mechanism of vernodalin using in vitro and in vivo model.MethodsVernodalin was isolated through the bioassay guided fractionation from the seeds. The protein expression of p-Akt, PI3K, FOXO3a, Bim, p27kip1, cyclinD1, and cyclinE was examined by the Western blot analysis. Immunoprecipitation assays were performed to analyse Akt kinase activity. Small interfering RNA (siRNA) was used to study the role of FOXO3a upregulation and their targets during vernodalin treatment. Immunofluorescence, subcellular localisation of FOXO3a by Western blot was performed to analyse FOXO3a localisation in nucleus of breast cancer cells. Immunohistochemical analysis of PCNA, Ki67, p27kip1, FOXO3a and p-FOXO3a in the LA7-induced mammary gland tumor model was performed.ResultsOur results showed that vernodalin regulates cancer cell apoptosis through activation of FOXO transcription factors and its downstream targets (Bim, p27Kip1, p21Waf1/cip1, cyclin D1, cyclin E) as examined by Western blots. Furthermore, we showed that FOXO3a/PI3K-Akt played a significant role in vernodalin induced apoptosis in breast cancer cells. Immunoprecipitation assays showed Akt kinase activity was downregulated. Immunofluorescence, subcellular fractionation and Western blot showed FOXO3a accumulation in the nucleus of breast cancer cells after vernodalin treatment. Silencing of FOXO3a protected breast cancer cells against vernodalin induced apoptosis. The anti-tumor action of vernodalin was further confirmed by examining cell proliferative markers, PCNA and Ki67 in the LA7-induced mammary gland tumor model. We also corroborated our findings in vivo by showing upregulation of p27Kip1, FOXO3a and decrease in the p-FOXO3a level in vernodalin-treated breast tumor tissue.ConclusionsOur results suggest that PI3K-Akt/FOXOa pathway is a critical mediator of vernodalin-induced cytotoxicity and this compound could be further developed as a potential chemopreventive or chemotherapeutic agent for breast cancer therapy.

Collaboration


Dive into the Hamed Karimian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge