Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hamid Krim is active.

Publication


Featured researches published by Hamid Krim.


IEEE Signal Processing Magazine | 1996

Two decades of array signal processing research: the parametric approach

Hamid Krim; Mats Viberg

The quintessential goal of sensor array signal processing is the estimation of parameters by fusing temporal and spatial information, captured via sampling a wavefield with a set of judiciously placed antenna sensors. The wavefield is assumed to be generated by a finite number of emitters, and contains information about signal parameters characterizing the emitters. A review of the area of array processing is given. The focus is on parameter estimation methods, and many relevant problems are only briefly mentioned. We emphasize the relatively more recent subspace-based methods in relation to beamforming. The article consists of background material and of the basic problem formulation. Then we introduce spectral-based algorithmic solutions to the signal parameter estimation problem. We contrast these suboptimal solutions to parametric methods. Techniques derived from maximum likelihood principles as well as geometric arguments are covered. Later, a number of more specialized research topics are briefly reviewed. Then, we look at a number of real-world problems for which sensor array processing methods have been applied. We also include an example with real experimental data involving closely spaced emitters and highly correlated signals, as well as a manufacturing application example.


IEEE Transactions on Signal Processing | 1996

Time-invariant orthonormal wavelet representations

Jean-Christophe Pesquet; Hamid Krim; Hervé Carfantan

A simple construction of an orthonormal basis starting with a so-called mother wavelet, together with an efficient implementation gained the wavelet decomposition easy acceptance and generated a great research interest in its applications. An orthonormal basis may not, however, always be a suitable representation of a signal, particularly when time (or space) invariance is a required property. The conventional way around this problem is to use a redundant decomposition. We address the time-invariance problem for orthonormal wavelet transforms and propose an extension to wavelet packet decompositions. We show that it,is possible to achieve time invariance and preserve the orthonormality. We subsequently propose an efficient approach to obtain such a decomposition. We demonstrate the importance of our method by considering some application examples in signal reconstruction and time delay estimation.


IEEE Transactions on Image Processing | 2009

A Shearlet Approach to Edge Analysis and Detection

Sheng Yi; Demetrio Labate; Glenn R. Easley; Hamid Krim

It is well known that the wavelet transform provides a very effective framework for analysis of multiscale edges. In this paper, we propose a novel approach based on the shearlet transform: a multiscale directional transform with a greater ability to localize distributed discontinuities such as edges. Indeed, unlike traditional wavelets, shearlets are theoretically optimal in representing images with edges and, in particular, have the ability to fully capture directional and other geometrical features. Numerical examples demonstrate that the shearlet approach is highly effective at detecting both the location and orientation of edges, and outperforms methods based on wavelets as well as other standard methods. Furthermore, the shearlet approach is useful to design simple and effective algorithms for the detection of corners and junctions.


IEEE Transactions on Signal Processing | 2001

Image denoising: a nonlinear robust statistical approach

A. Ben Hamza; Hamid Krim

Nonlinear filtering techniques based on the theory of robust estimation are introduced. Some deterministic and asymptotic properties are derived. The proposed denoising methods are optimal over the Huber /spl epsi/-contaminated normal neighborhood and are highly resistant to outliers. Experimental results showing a much improved performance of the proposed filters in the presence of Gaussian and heavy-tailed noise are analyzed and illustrated.


IEEE Transactions on Signal Processing | 2003

A generalized divergence measure for robust image registration

Yun He; A.B. Hamza; Hamid Krim

Entropy-based divergence measures have shown promising results in many areas of engineering and image processing. We define a new generalized divergence measure, namely, the Jensen-Renyi (1996, 1976) divergence. Some properties such as convexity and its upper bound are derived. Based on the Jensen-Renyi divergence, we propose a new approach to the problem of image registration. Some appealing advantages of registration by Jensen-Renyi divergence are illustrated, and its connections to mutual information-based registration techniques are analyzed. As the key focus of this paper, we apply Jensen-Renyi divergence for inverse synthetic aperture radar (ISAR) image registration. The goal is to estimate the target motion during the imaging time. Our approach applies Jensen-Renyi divergence to measure the statistical dependence between consecutive ISAR image frames, which would be maximal if the images are geometrically aligned. Simulation results demonstrate that the proposed method is efficient and effective.


IEEE Transactions on Signal Processing | 1992

Operator approach to performance analysis of root-MUSIC and root-min-norm

Hamid Krim; Philippe Forster; John G. Proakis

The authors carry out a performance analysis of two eigenstructure-based direction-of-arrival estimation algorithms, using a series expansion of projection operators (or projectors) on the signal and noise subspaces. In the interest of algebraic simplicity, an operator formalism is utilized. A perturbation analysis is performed on the projectors, the results of which are used to determine the effect on the estimated parameters. The approach makes it possible to carry out the analysis to any chosen order of expansion of the projectors by using an original recurrence formula developed for the higher-order terms in the series expansion of the projectors. This method is used to study the root-MUSIC and root-min-norm algorithms and establish the superiority of root-MUSIC in all cases. The analysis has also resulted in insightful asymptotic expressions that describe the statistical behavior of the estimated angles and radii of the signal zeros. >


International Journal of Computer Vision | 2005

Information-Theoretic Active Polygons for Unsupervised Texture Segmentation

Gozde Unal; Anthony J. Yezzi; Hamid Krim

Curve evolution models used in image segmentation and based on image region information usually utilize simple statistics such as means and variances, hence can not account for higher order nature of the textural characteristics of image regions. In addition, the object delineation by active contour methods, results in a contour representation which still requires a substantial amount of data to be stored for subsequent multimedia applications such as visual information retrieval from databases. Polygonal approximations of the extracted continuous curves are required to reduce the amount of data since polygons are powerful approximators of shapes for use in later recognition stages such as shape matching and coding. The key contribution of this paper is the development of a new active contour model which nicely ties the desirable polygonal representation of an object directly to the image segmentation process. This model can robustly capture texture boundaries by way of higher-order statistics of the data and using an information-theoretic measure and with its nature of the ordinary differential equations. This new variational texture segmentation model, is unsupervised since no prior knowledge on the textural properties of image regions is used. Another contribution in this sequel is a new polygon regularizer algorithm which uses electrostatics principles. This is a global regularizer and is more consistent than a local polygon regularization in preserving local features such as corners.


IEEE Transactions on Information Theory | 1999

Minimax description length for signal denoising and optimized representation

Hamid Krim; Irvin C. Schick

Approaches to wavelet-based denoising (or signal enhancement) have generally relied on the assumption of normally distributed perturbations. To relax this assumption, which is often violated in practice, we derive a robust wavelet thresholding technique based on the minimax description length (MMDL) principle. We first determine the least favorable distribution in the /spl epsiv/-contaminated normal family as the member that maximizes the entropy. We show that this distribution, and the best estimate based upon it, namely the maximum-likelihood estimate, together constitute a saddle point. The MMDL approach results in a thresholding scheme that is resistant to heavy tailed noise. We further extend this framework and propose a novel approach to selecting an adapted or best basis (BB) that results in optimal signal reconstruction. Finally, we address the practical case where the underlying signal is known to be bounded, and derive a two-sided thresholding technique that is resistant to outliers and has bounded error.


discrete geometry for computer imagery | 2003

Geodesic Object Representation and Recognition

A. Ben Hamza; Hamid Krim

This paper describes a shape signature that captures the intrinsic geometric structure of 3D objects. The primary motivation of the proposed approach is to encode a 3D shape into a one-dimensional geodesic distribution function. This compact and computationally simple representation is based on a global geodesic distance defined on the object surface, and takes the form of a kernel density estimate. To gain further insight into the geodesic shape distribution and its practicality in 3D computer imagery, some numerical experiments are provided to demonstrate the potential and the much improved performance of the proposed methodology in 3D object matching. This is carried out using an information-theoretic measure of dissimilarity between probabilistic shape distributions.


IEEE Signal Processing Magazine | 2002

Unifying probabilistic and variational estimation

A.B. Hamza; Hamid Krim; Gozde Unal

A maximum a posteriori (MAP) estimator using a Markov or a maximum entropy random field model for a prior distribution may be viewed as a minimizer of a variational problem.Using notions from robust statistics, a variational filter referred to as a Huber gradient descent flow is proposed. It is a result of optimizing a Huber functional subject to some noise constraints and takes a hybrid form of a total variation diffusion for large gradient magnitudes and of a linear diffusion for small gradient magnitudes. Using the gained insight, and as a further extension, we propose an information-theoretic gradient descent flow which is a result of minimizing a functional that is a hybrid between a negentropy variational integral and a total variation. Illustrating examples demonstrate a much improved performance of the approach in the presence of Gaussian and heavy tailed noise. In this article, we present a variational approach to MAP estimation with a more qualitative and tutorial emphasis. The key idea behind this approach is to use geometric insight in helping construct regularizing functionals and avoiding a subjective choice of a prior in MAP estimation. Using tools from robust statistics and information theory, we show that we can extend this strategy and develop two gradient descent flows for image denoising with a demonstrated performance.

Collaboration


Dive into the Hamid Krim's collaboration.

Top Co-Authors

Avatar

Harish Chintakunta

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony J. Yezzi

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Liyi Dai

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar

Alan S. Willsky

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sajjad Baloch

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Xiao Bian

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Sheng Yi

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Abdessamad Ben Hamza

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Saba Emrani

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge