Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hamid Reza Barzegar is active.

Publication


Featured researches published by Hamid Reza Barzegar.


Nature Communications | 2013

Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic γ-Fe2O3 nanoparticles

Tiva Sharifi; Eduardo Gracia-Espino; Hamid Reza Barzegar; Xueen Jia; Florian Nitze; Guangzhi Hu; Per Nordblad; Cheuk-Wai Tai; Thomas Wågberg

Graphene nanoscrolls are Archimedean-type spirals formed by rolling single-layer graphene sheets. Their unique structure makes them conceptually interesting and understanding their formation gives important information on the manipulation and characteristics of various carbon nanostructures. Here we report a 100% efficient process to transform nitrogen-doped reduced graphene oxide sheets into homogeneous nanoscrolls by decoration with magnetic γ-Fe2O3 nanoparticles. Through a large number of control experiments, magnetic characterization of the decorated nanoparticles, and ab initio calculations, we conclude that the rolling is initiated by the strong adsorption of maghemite nanoparticles at nitrogen defects in the graphene lattice and their mutual magnetic interaction. The nanoscroll formation is fully reversible and upon removal of the maghemite nanoparticles, the nanoscrolls return to open sheets. Besides supplying information on the rolling mechanism of graphene nanoscrolls, our results also provide important information on the stabilization of iron oxide nanoparticles.


ACS Applied Materials & Interfaces | 2013

Synthesis of Palladium/Helical Carbon Nanofiber Hybrid Nanostructures and Their Application for Hydrogen Peroxide and Glucose Detection

Xueen Jia; Guangzhi Hu; Florian Nitze; Hamid Reza Barzegar; Tiva Sharifi; Cheuk-Wai Tai; Thomas Wågberg

We report on a novel sensing platform for H2O2 and glucose based on immobilization of palladium-helical carbon nanofiber (Pd-HCNF) hybrid nanostructures and glucose oxidase (GOx) with Nafion on a glassy carbon electrode (GCE). HCNFs were synthesized by a chemical vapor deposition process on a C60-supported Pd catalyst. Pd-HCNF nanocomposites were prepared by a one-step reduction free method in dimethylformamide (DMF). The prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The Nafion/Pd-HCNF/GCE sensor exhibits excellent electrocatalytic sensitivity toward H2O2 (315 mA M(-1) cm(-2)) as probed by cyclic voltammetry (CV) and chronoamperometry. We show that Pd-HCNF-modified electrodes significantly reduce the overpotential and enhance the electron transfer rate. A linear range from 5.0 μM to 2.1 mM with a detection limit of 3.0 μM (based on the S/N = 3) and good reproducibility were obtained. Furthermore, a sensing platform for glucose was prepared by immobilizing the Pd-HCNFs and glucose oxidase (GOx) with Nafion on a glassy carbon electrode. The resulting biosensor exhibits a good response to glucose with a wide linear range (0.06-6.0 mM) with a detection limit of 0.03 mM and a sensitivity of 13 mA M(-1) cm(-2). We show that small size and homogeneous distribution of the Pd nanoparticles in combination with good conductivity and large surface area of the HCNFs lead to a H2O2 and glucose sensing platform that performs in the top range of the herein reported sensor platforms.


Nature Communications | 2014

Small palladium islands embedded in palladium–tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction

Guangzhi Hu; Florian Nitze; Eduardo Gracia-Espino; Jingyuan Ma; Hamid Reza Barzegar; Tiva Sharifi; Xueen Jia; Andrey Shchukarev; Lu Lu; Chuansheng Ma; Guang Yang; Thomas Wågberg

The sluggish kinetics of the oxygen reduction reaction at the cathode side of proton exchange membrane fuel cells is one major technical challenge for realizing sustainable solutions for the transportation sector. Finding efficient yet cheap electrocatalysts to speed up this reaction therefore motivates researchers all over the world. Here we demonstrate an efficient synthesis of palladium-tungsten bimetallic nanoparticles supported on ordered mesoporous carbon. Despite a very low percentage of noble metal (palladium:tungsten=1:8), the hybrid catalyst material exhibits a performance equal to commercial 60% platinum/Vulcan for the oxygen reduction process. The high catalytic efficiency is explained by the formation of small palladium islands embedded at the surface of the palladium-tungsten bimetallic nanoparticles, generating catalytic hotspots. The palladium islands are ~1 nm in diameter, and contain 10-20 palladium atoms that are segregated at the surface. Our results may provide insight into the formation, stabilization and performance of bimetallic nanoparticles for catalytic reactions.


RSC Advances | 2014

Reduction free room temperature synthesis of a durable and efficient Pd/ordered mesoporous carbon composite electrocatalyst for alkaline direct alcohols fuel cell

Guangzhi Hu; Florian Nitze; Xueen Jia; Tiva Sharifi; Hamid Reza Barzegar; Eduardo Gracia-Espino; Thomas Wågberg

The development of easy and environmentally benign synthesis methods of efficient electrocatalysts for use in energy conversion applications motivates researchers all over the world. Here we report a novel and versatile method to synthesize well-dispersed palladium-functionalized ordered mesoporous carbons (Pd–OMCs) at room temperature without any reducing agent by one-pot mixing of tri(dibenzylideneacetone)palladium(0) (Pd2DBA3) and OMCs together in a common N,N-dimethylformamide (DMF) solution. The formation of Pd nanoparticles and their crystallization on the OMC is catalyzed by protons in the solution and can thus be controlled by the solution pH. The complete process and the as-prepared nanocomposite was characterized by UV-spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The electrocatalytic property of the decorated material was examined with cyclic voltammetry (CV). The Pd–OMC composite shows up to two times higher electrocatalytic ability with a significantly better durability towards ethanol and methanol oxidation in alkaline media compared to commercial high surface area conductive carbon black Vulcan XC-72 decorated with equivalent Pd nanoparticles. Our described method provides new insight for the development of highly efficient carbon based nanocatalysts by simple and environmentally sound methods.


Nanotechnology | 2012

On the fabrication of crystalline C 60 nanorod transistors from solution

Christian Larsen; Hamid Reza Barzegar; Florian Nitze; Thomas Wågberg; Ludvig Edman

Flexible and high-aspect-ratio C(60) nanorods are synthesized using a liquid-liquid interfacial precipitation process. As-grown nanorods are shown to exhibit a hexagonal close-packed single-crystal structure, with m-dichlorobenzene solvent molecules incorporated into the crystalline structure in a C(60):m-dichlorobenzene ratio of 3:2. An annealing step at 200 °C transforms the nanorods into a solvent-free face-centred-cubic polycrystalline structure. The nanorods are deposited onto field-effect transistor structures using two solvent-based techniques: drop-casting and dip-coating. We find that dip-coating deposition results in a preferred alignment of non-bundled nanorods and a satisfying transistor performance. The latter is quantified by the attainment of an electron mobility of 0.08 cm (2) V(-1) s(-1) and an on/off ratio of > 10(4) for a single-crystal nanorod transistor, fabricated with a solution-based and low-temperature process that is compatible with flexible substrates.


Scientific Reports | 2015

On the Stability and Abundance of Single Walled Carbon Nanotubes

Daniel Hedman; Hamid Reza Barzegar; Arne Rosén; Thomas Wågberg; J. Andreas Larsson

Many nanotechnological applications, using single-walled carbon nanotubes (SWNTs), are only possible with a uniform product. Thus, direct control over the product during chemical vapor deposition (CVD) growth of SWNT is desirable, and much effort has been made towards the ultimate goal of chirality-controlled growth of SWNTs. We have used density functional theory (DFT) to compute the stability of SWNT fragments of all chiralities in the series representing the targeted products for such applications, which we compare to the chiralities of the actual CVD products from all properly analyzed experiments. From this comparison we find that in 84% of the cases the experimental product represents chiralities among the most stable SWNT fragments (within 0.2 eV) from the computations. Our analysis shows that the diameter of the SWNT product is governed by the well-known relation to size of the catalytic nanoparticles, and the specific chirality is normally determined by the product’s relative stability, suggesting thermodynamic control at the early stage of product formation. Based on our findings, we discuss the effect of other experimental parameters on the chirality of the product. Furthermore, we highlight the possibility to produce any tube chirality in the context of recent published work on seeded-controlled growth.


Nano Letters | 2015

C60/Collapsed Carbon Nanotube Hybrids : A Variant of Peapods

Hamid Reza Barzegar; Eduardo Gracia-Espino; Aiming Yan; Claudia Ojeda-Aristizabal; Gabriel Dunn; Thomas Wågberg; Alex Zettl

We examine a variant of so-called carbon nanotube peapods by packing C60 molecules inside the open edge ducts of collapsed carbon nanotubes. C60 insertion is accomplished through a facile single-step solution-based process. Theoretical modeling is used to evaluate favorable low-energy structural configurations. Overfilling of the collapsed tubes allows infiltration of C60 over the full cross-section of the tubes and consequent partial or complete reinflation, yielding few-wall, large diameter cylindrical nanotubes packed with crystalline C60 solid cores.


Molecules | 2012

Water Assisted Growth of C-60 Rods and Tubes by Liquid-Liquid Interfacial Precipitation Method

Hamid Reza Barzegar; Florian Nitze; Arthur Malolepszy; Leszek Stobinski; Cheuk-Wai Tai; Thomas Wågberg

C60 nanorods with hexagonal cross sections are grown using a static liquid–liquid interfacial precipitation method in a system of C60/m-dichlorobenzene solution and ethanol. Adding water to the ethanol phase leads instead to C60 tubes where both length and diameter of the C60 tubes can be controlled by the water content in the ethanol. Based on our observations we find that the diameter of the rods/tubes strongly depends on the nucleation step. We propose a liquid-liquid interface growth model of C60 rods and tubes based on the diffusion rate of the good C60 containing solvent into the poor solvent as well as on the size of the crystal seeds formed at the interface between the two solvents. The grown rods and tubes exhibit a hexagonal solvate crystal structure with m-dichlorobenzene solvent molecules incorporated into the crystal structure, independent of the water content. An annealing step at 200 °C at a pressure <1 kPa transforms the grown structures into a solvent-free face centered cubic structure. Both the hexagonal and the face centered cubic structures are very stable and neither morphology nor structure shows any signs of degradation after three months of storage.


ACS Nano | 2015

Fabrication of One-Dimensional Zigzag [6,6]-Phenyl-C61-Butyric Acid Methyl Ester Nanoribbons from Two-Dimensional Nanosheets

Eduardo Gracia-Espino; Hamid Reza Barzegar; Tiva Sharifi; Aiming Yan; Alex Zettl; Thomas Wågberg

One-dimensional (1D) zigzag [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanoribbons are produced by folding two-dimensional ultrathin PCBM nanosheets in a simple solvent process. The unique 1D PCBM nanostructures exhibit uniform width of 3.8 ± 0.3 nm, equivalent to four PCBM molecules, and lengths of 20-400 nm. These nanoribbons show well-defined crystalline structure, comprising PCBM molecules in a hexagonal arrangement without trapped solvent molecules. First-principle calculations and detailed experimental characterization provide an insight into the structure and formation mechanism of the 1D PCBM nanoribbons. Given their dimensions and physical properties, we foresee that these nanostructures should be ideal as acceptor material in organic solar cells.


Nano Research | 2017

Spontaneous twisting of a collapsed carbon nanotube

Hamid Reza Barzegar; Aiming Yan; Sinisa Coh; Eduardo Gracia-Espino; Claudia Ojeda-Aristizabal; Gabriel Dunn; Marvin L. Cohen; Steven G. Louie; Thomas Wågberg; Alex Zettl

We study the collapsing and subsequent spontaneous twisting of a carbon nanotube by in situ transmission electron microscopy (TEM). A custom-sized nanotube is first created in the microscope by selectively extracting shells from a parent multi-walled tube. The few-walled, large-diameter daughter nanotube is driven to collapse via mechanical stimulation, after which the ribbon-like collapsed tube spontaneously twists along its long axis. In situ diffraction experiments fully characterize the uncollapsed and collapsed tubes. The experimental observations and associated theoretical analysis indicate that the origin of the twisting is compressive strain.

Collaboration


Dive into the Hamid Reza Barzegar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Zettl

University of California

View shared research outputs
Top Co-Authors

Avatar

Guangzhi Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge