Hamid Teimouri
Rice University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hamid Teimouri.
Journal of Statistical Mechanics: Theory and Experiment | 2015
Daniel Celis-Garza; Hamid Teimouri; Anatoly B. Kolomeisky
Enzymatic molecules that actively support many cellular processes, including transport, cell division and cell motility, are known as motor proteins or molecular motors. Experimental studies indicate that they interact with each other and they frequently work together in large groups. To understand the mechanisms of collective behavior of motor proteins we study the effect of interactions in the transport of molecular motors along linear filaments. It is done by analyzing a recently introduced class of totally asymmetric exclusion processes that takes into account the intermolecular interactions via thermodynamically consistent approach. We develop a new theoretical method that allows us to compute analytically all dynamic properties of the system. Our analysis shows that correlations play important role in dynamics of interacting molecular motors. Surprisingly, we find that the correlations for repulsive interactions are weaker and more short-range than the correlations for the attractive interactions. In addition, it is shown that symmetry of interactions affect dynamic properties of molecular motors. The implications of these findings for motor proteins transport are discussed. Our theoretical predictions are tested by extensive Monte Carlo computer simulations.
Journal of Physics A | 2015
Hamid Teimouri; Anatoly B. Kolomeisky; Kareem Mehrabiani
Biological transport is supported by collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by analyzing a new class of totally asymmetric exclusion processes where interactions are accounted for in a thermodynamically consistent fashion. It allows us to connect explicitly microscopic features of motor proteins with their collective dynamic properties. Theoretical analysis that combines various mean-field calculations and computer simulations suggests that dynamic properties of molecular motors strongly depend on interactions, and correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motors transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.
Journal of Chemical Physics | 2014
Hamid Teimouri; Anatoly B. Kolomeisky
The fundamental processes of biological development are governed by multiple signaling molecules that create non-uniform concentration profiles known as morphogen gradients. It is widely believed that the establishment of morphogen gradients is a result of complex processes that involve diffusion and degradation of locally produced signaling molecules. We developed a multi-dimensional discrete-state stochastic approach for investigating the corresponding reaction-diffusion models. It provided a full analytical description for stationary profiles and for important dynamic properties such as local accumulation times, variances, and mean first-passage times. The role of discreteness in developing of morphogen gradients is analyzed by comparing with available continuum descriptions. It is found that the continuum models prediction about multiple time scales near the source region in two-dimensional and three-dimensional systems is not supported in our analysis. Using ideas that view the degradation process as an effective potential, the effect of dimensionality on establishment of morphogen gradients is also discussed. In addition, we investigated how these reaction-diffusion processes are modified with changing the size of the source region.
Journal of Physical Chemistry B | 2016
Hamid Teimouri; Behnaz Bozorgui; Anatoly B. Kolomeisky
Successful biological development via spatial and temporal regulations of cell differentiation relies on the action of multiple signaling molecules that are known as morphogens. It is now well established that biological signaling molecules create nonuniform concentration profiles, called morphogen gradients, that activate different genes, leading to patterning in the developing organisms. The current view of the formation of morphogen gradients is that it is a result of complex reaction-diffusion processes that include production, diffusion, and degradation of signaling molecules. Recent studies also suggest that the degradation of morphogens is a critically important step in the whole process. We develop a theoretical model that allows us to investigate the role of a spatially varying degradation in the formation of morphogen gradients. Our analysis shows that the spatial inhomogeneities in degradation might strongly influence the dynamics of formation of signaling profiles. Physical-chemical mechanisms of the underlying processes are discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Elgin Korkmazhan; Hamid Teimouri; Neil Peterman; Erel Levine
Significance Unlike their eukaryotic counterparts, bacterial cells are composed of a single compartment. This allows many rapidly diffusing macromolecules, such as proteins and mRNAs, to be evenly distributed in the cell. Important exceptions are proteins embedded in the cell membrane, which transport material and information across the membrane. Often these proteins attach to the membrane before their translation is complete, anchoring their mRNAs to the vicinity of the membrane. This coupling between translation and localization suggests that the dynamics of translation may shape the spatial organization. In this paper, we use a canonical model of nonequilibrium statistical physics to characterize this connection and show how tunable kinetic properties allow the cell to regulate the spatial organization of both mRNAs and proteins. Unlike most macromolecules that are homogeneously distributed in the bacterial cell, mRNAs that encode inner-membrane proteins can be concentrated near the inner membrane. Cotranslational insertion of the nascent peptide into the membrane brings the translating ribosome and the mRNA close to the membrane. This suggests that kinetic properties of translation can determine the spatial organization of these mRNAs and proteins, which can be modulated through posttranscriptional regulation. Here we use a simple stochastic model of translation to characterize the effect of mRNA properties on the dynamics and statistics of its spatial distribution. We show that a combination of the rate of translation initiation, the availability of secretory apparatuses, and the composition of the coding region determines the abundance of mRNAs near the membrane, as well as their residence time. We propose that the spatiotemporal dynamics of mRNAs can give rise to protein clusters on the membrane and determine their size distribution.
Journal of Physical Chemistry Letters | 2016
Hamid Teimouri; Anatoly B. Kolomeisky
Biological signaling is a crucial natural process that governs the formation of all multicellular organisms. It relies on efficient and fast transfer of information between different cells and tissues. It has been presumed for a long time that these long-distance communications in most systems can take place only indirectly via the diffusion of signaling molecules, also known as morphogens, through the extracellular fluid; however, recent experiments indicate that there is also an alternative direct delivery mechanism. It utilizes dynamic tubular cellular extensions, called cytonemes, that directly connect cells, supporting the flux of morphogens to specific locations. We present a first quantitative analysis of the cytoneme-mediated mechanism of biological signaling. Dynamics of the formation of signaling molecule profiles, which are also known as morphogen gradients, is discussed. It is found that the direct-delivery mechanism is more robust with respect to fluctuations in comparison with the passive diffusion mechanism. In addition, we show that the direct transport of morphogens through cytonemes simultaneously delivers the information to all cells, which is also different from the diffusional indirect delivery; however, it requires energy dissipation and it might be less efficient at large distances due to intermolecular interactions of signaling molecules.
Journal of Chemical Physics | 2013
Hamid Teimouri; Anatoly B. Kolomeisky
The concept of continuous-time random walks (CTRW) is a generalization of ordinary random walk models, and it is a powerful tool for investigating a broad spectrum of phenomena in natural, engineering, social, and economic sciences. Recently, several theoretical approaches have been developed that allowed to analyze explicitly dynamics of CTRW at all times, which is critically important for understanding mechanisms of underlying phenomena. However, theoretical analysis has been done mostly for systems with a simple geometry. Here we extend the original method based on generalized master equations to analyze all-time dynamics of CTRW models on complex networks. Specific calculations are performed for models on lattices with branches and for models on coupled parallel-chain lattices. Exact expressions for velocities and dispersions are obtained. Generalized fluctuations theorems for CTRW models on complex networks are discussed.
Physical Biology | 2017
Hamid Teimouri; Elgin Korkmazhan; Joel Stavans; Erel Levine
Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.
Journal of Physics A | 2016
Hamid Teimouri; Anatoly B. Kolomeisky
The formation and growth of multi-cellular organisms and tissues from several genetically identical embryo cells is one of the most fundamental natural phenomena. These processes are stimulated and governed by multiple biological signaling molecules, which are also called morphogens. Embryo cells are able to read and pass genetic information by measuring the non-uniform concentration profiles of signaling molecules. It is widely believed that the establishment of concentration profiles of morphogens, commonly referred as morphogen gradients, is a result of complex biophysical and biochemical processes that might involve diffusion and degradation of locally produced signaling molecules. In this review, we discuss various theoretical aspects of the mechanisms for morphogen gradient formation, including stationary and transient dynamics, the effect of source delocalization, diffusion, different degradation mechanisms, and the role of spatial dimensions. Theoretical predictions are compared with experimental observations. In addition, we analyze the potential alternative mechanisms of the delivery of biological signals in embryo cells and tissues. Current challenges in understanding the mechanisms of morphogen gradients and future directions are also discussed.
Physical Biology | 2015
Hamid Teimouri; Anatoly B. Kolomeisky
Successful biological development via spatial regulation of cell differentiation relies on the action of multiple signaling molecules that are known as morphogens. It is now well-established that signaling molecules create non-uniform concentration profiles, morphogen gradients, that activate different genes, leading to patterning in the developing embryos. The current view of the formation of morphogen gradients is that it is a result of complex reaction-diffusion processes that include the strongly localized production, diffusion and uniform degradation of signaling molecules. However, multiple experimental studies also suggest that the production of morphogen in many cases is delocalized. We develop a theoretical method that allows us to investigate the role of the delocalization in the formation of morphogen gradients. The approach is based on discrete-state stochastic models that can be solved exactly for arbitrary production lengths and production rates of morphogen molecules. Our analysis shows that the delocalization might have a strong effect on mechanisms of the morphogen gradient formation. The physical origin of this effect is discussed.