Hamideh Salehi
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hamideh Salehi.
Dental Materials | 2012
Jean-Cédric Durand; Bruno Jacquot; Hamideh Salehi; Michel Fages; Jacques Margerit; Frédéric Cuisinier
OBJECTIVES Esthetic demands and biocompatibility have prompted the development of all-ceramic dental crowns. Yttria tetragonal zirconia polycrystalline (Y-TZP) framework material has the best mechanical properties compared to other all-ceramic systems, but the interface is the weakest component of core veneered restorations. Confocal Raman microscopy possibilities are used to ensure the understanding of the zirconia-feldspathic ceramic relationship, which is not well known. METHODS Bilayered zirconia (Vita In-Ceram(®) YZ) veneer (Vita VM(®)9) blocks were manufactured. Raman analyses were performed using two protocols: (1) single spectra, line scans and images on a sectioned and polished specimen and (2) in depth line scans on unprepared specimen. Single spectra, images and line scans provide information about the crystalline phases, their distribution and the existence of a possible diffusion at the Y-TZP/VM(®)9 interface, respectively. The elemental distribution of zirconium (Zr) and silicon (Si) around this interface were investigated using energy dispersive X-ray spectroscopy (EDS). RESULTS Raman single spectra embodied a unique spectrum (crystalline) on Y-TZP and two spectra (crystalline and amorphous) on VM(®)9; these spectra were clearly distinguished. Raman line scans showed a series of transition spectra across the interface from VM(®)9 to Y-TZP. It emphasized an interdiffusion zone, which was estimated at a maximum of 2 microns, found on 2d Raman images and confirmed by EDS. The elemental distribution with EDS showed a mutual diffusion of Zr and Si and was mainly dominated by Si diffusion in Y-TZP. SIGNIFICANCE Confocal Raman microscopy highlights an interdiffusion zone at the zirconia-feldspathic ceramic interface. The elemental transition layer is estimated and is supported by EDS analysis as a coupling technique.
Journal of Biophotonics | 2012
Hamideh Salehi; Elodie Terrer; Ivan Panayotov; Bernard Levallois; Bruno Jacquot; Hervé Tassery; Frédéric Cuisinier
The goals of this trial were, first, to produce a Raman mapping of decay and sound dentin samples, through accurate analysis of the Raman band spectra variations of mineral and organic components. The second goal was to confirm the correlation between the Raman signal and the signal of a fluorescent camera, by assaying the concentration of pentosidine and natural collagen fluorescent crosslink using reverse phase high-pressure liquid chromatography. The first correlation assumed a possible relationship between the signal observed with the camera and Raman spectroscopy. The second correlation assumed an association with the Maillard reaction. Absence of a correlation for this trial was that no association could be found between Raman spectra characteristics, fluorescence variation and the HPLC assay. Our results void this absence.
Applied Physics Letters | 2013
Hamideh Salehi; L. Derely; Attila G. Végh; Jean-Cédric Durand; Csilla Gergely; C. Larroque; Marie-Alix Fauroux; Frédéric Cuisinier
Confocal Raman microscopy, a non-invasive, label-free, and high spatial resolution imaging technique is employed to trace the anticancer drug paclitaxel in living Michigan Cancer Foundation-7 (MCF-7) cells. The Raman images were treated by K-mean cluster analysis to detect the drug in cells. Distribution of paclitaxel in cells is verified by calculating the correlation coefficient between the reference spectrum of the drug and the whole Raman image spectra. A time dependent gradual diffusion of paclitaxel all over the cell is observed suggesting a complementary picture of the pharmaceutical action of this drug based on rapid binding of free tubulin to crystallized paclitaxel.
Clinical Oral Investigations | 2013
Ivan Panayotov; Elodie Terrer; Hamideh Salehi; Hervé Tassery; Jacques Yachouh; Frédéric Cuisinier; Bernard Levallois
ObjectivesOur aim was to determine the origin of the red fluorescence of carious dentine observed with the Soprolife® camera.MethodsWe conducted in vitro studies to evaluate the origin of the red fluorescence using acids and matrix metalloproteinase (MMP) to mimic caries and methylglycoxal (MGO) to evaluate the effect of glycation reactions on the red fluorescence. In every step of these models, we detected the changes of dentin photonic response with Soprolife® in daylight mode and in treatment mode. A Raman spectroscopy analysis was performed to determine the variations of the dentin organic during the in vitro caries processes. Raman microscopy was performed to identify change in the collagen matrix of dentine.ResultsThe red fluorescence observed in carious dentine using a Soprolife® camera corresponds to the brownish color observed using daylight. Demineralization using nitric acid induces a loss of the green fluorescence of dentine. The red fluorescence of carious dentine is resistant to acid treatment. Immersion of demineralized dentine in MGO induces a change of color from white to orange-red. This indicates that the Maillard reaction contributes to lesion coloration. Immersion of demineralized dentine in an MMP-1 solution followed by MGO treatment results in a similar red fluorescence. Raman microspectroscopy analysis reveals accumulation of AGEs product in red-colored dentine.ConclusionsOur results provide important information on the origin of the fluorescence variation of dentine observed with the Soprolife® camera. We demonstrate that the red fluorescence of carious dentine is linked to the accumulation of Advanced Glycation End products (AGE).Clinical relevanceThe study provides a new biological basis for the red fluorescence of carious dentine and reinforces the importance of the Soprolife® camera in caries diagnostics.
Journal of Biomedical Optics | 2013
Hamideh Salehi; Elodie Middendorp; Ivan Panayotov; Pierre-Yves Collard Dutilleul; Attila-Gergely Vegh; Sathish Kumar Ramakrishnan; Csilla Gergely; Frédéric Cuisinier
Abstract. Confocal Raman microscopy is a noninvasive, label-free imaging technique used to study apoptosis of live MCF-7 cells. The images are based on Raman spectra of cells components, and their apoptosis is monitored through diffusion of cytochrome c in cytoplasm. K-mean clustering is used to identify mitochondria in cells, and correlation analysis provides the cytochrome c distribution inside the cells. Our results demonstrate that incubation of cells for 3 h with 10 μM of paclitaxel does not induce apoptosis in MCF-7 cells. On the contrary, incubation for 30 min at a higher concentration (100 μM) of paclitaxel induces gradual release of the cytochrome c into the cytoplasm, indicating cell apoptosis via a caspase independent pathway.
Journal of Materials Science: Materials in Medicine | 2012
Jean-Cédric Durand; Bruno Jacquot; Hamideh Salehi; Jacques Margerit; Frédéric Cuisinier
The aim of this study was to evaluate the changes in the transition layer at the interface between yttria partial stabilized tetragonal zirconia polycrystalline (Y-TZP) core and veneering feldspathic ceramic (VITA VM®9), under different manufacturing methods. Confocal Raman microscopy and energy dispersive X-ray spectroscopy (EDS) analyses were carried out on tapered veneered cross sections of the interface. For some samples, an additional firing of the core was used, as the application of an optional liner material between the core and veneer. Single Raman spectra were distinguishable between Y-TZP and the veneering materials. VM®9 and liner spectra were broadly superimposable. No substantial differences appeared in their chemical elemental composition. 2D Raman images and EDS analysis emphasized changes in the interdiffusion thickness; the additional firing of the core decreased the interdiffusion zone, and the highest firing temperature of the liner increased the interdiffusion zone. These results, which will help us understand the changes in this transition layer, are discussed.
European Journal of Oral Sciences | 2012
Bernard Levallois; Elodie Terrer; Yvan Panayotov; Hamideh Salehi; Hervé Tassery; Paul Tramini; Frédéric Cuisinier
In clinical situations carious dentine tissues can be discriminated by most caries fluorescence detection tools, including a new fluorescence intra-oral camera. The objectives of this study were: (i) to analyze the Raman spectra of sound, carious, and demineralized dentine, (ii) to compare this spectral analysis with the fluorescence variation observed when using a fluorescence camera, and (iii) to evaluate the involvement of the Maillard reaction in the fluorescence variations. The first positive hypothesis tested was that the fluorescence of carious dentine obtained using a fluorescence camera and the Raman spectra variation were closely related. The second was that the variation of fluorescence could be linked with the Maillard reaction. Sound dentine, sound dentine demineralized in aqueous nitric acid solution, carious soft dentine, sound dentine demineralized in lactic acid solution, sound dentine demineralized in aqueous nitric acid solution and immersed in methylglycoxal solution, and sound dentine demineralized in aqueous nitric acid solution and immersed in methylglycoxal and glucose solutions, were studied using micro-Raman spectroscopy. Modifications in the band ratio of amide, phosphate, and carbonate were observed in the decayed and demineralized groups compared with the sound dentine group. The results indicate that a close relationship exists between the Maillard reaction and fluorescence variation.
Macromolecular Bioscience | 2014
Ivan Panayotov; Pierre-Yves Collart-Dutilleul; Hamideh Salehi; Marta Martin; Attila G. Végh; Jacques Yachouh; Boyan Vladimirov; Péter Sipos; Balázs Szalontai; Csilla Gergely; Frédéric Cuisinier
Further development of biomaterials is expected as advanced therapeutic products must be compliant to good manufacturing practice regulations. A spraying method for building-up polyelectrolyte films followed by the deposition of dental pulp cells by spraying is presented. Physical treatments of UV irradiation and a drying/wetting process are applied to the system. Structural changes and elasticity modifications of the obtained coatings are revealed by atomic force microscopy and by Raman spectroscopy. This procedure results in thicker, rougher and stiffer film. The initially ordered structure composed of mainly α helices is transformed into random/β-structures. The treatment enhanced dental pulp cell adhesion and proliferation, suggesting that this system is promising for medical applications.
Acta Biomaterialia Odontologica Scandinavica | 2016
Bahram Ranjkesh; Jacques Chevallier; Hamideh Salehi; Frédéric Cuisinier; Flemming Isidor; Henrik Løvschall
Abstract Aim: Calcium silicate cements are widely used in endodontics. Novel fast-setting calcium silicate cement with fluoride (Protooth) has been developed for potential applications in teeth crowns including cavity lining and cementation. Objective: To evaluate the surface apatite-forming ability of Protooth compositions as a function of fluoride content and immersion time in phosphate-buffered saline (PBS). Material and methods: Three cement compositions were tested: Protooth (3.5% fluoride and 10% radiocontrast), ultrafast Protooth (3.5% fluoride and 20% radiocontrast), and high fluoride Protooth (15% fluoride and 25% radiocontrast). Powders were cap-mixed with liquid, filled to the molds and immersed in PBS. Scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy were used to characterize the precipitations morphology and composition after 1, 7, 28, and 56 days. Apatite/belite Raman peak height indicated the apatite thickness. Results: Spherical calcium phosphate precipitations with acicular crystallites were formed after 1-day immersion in PBS and Raman spectra disclosed the phosphate band at 965 cm−1, supporting the apatite formation over Protooth compositions. The apatite deposition continued and more voluminous precipitations were observed after 56 days over the surface of all cements. Raman bands suggested the formation of β-type carbonated apatite over Protooth compositions. High fluoride Protooth showed the most compact deposition with significantly higher apatite/belite ratio compared to Protooth and ultrafast Protooth after 28 and 56 days. Conclusions: Calcium phosphate precipitations (apatite) were formed over Protooth compositions after immersion in PBS with increasing apatite formation as a function of time. High fluoride Protooth exhibited thicker apatite deposition.
Journal of Biomedical Optics | 2017
Amel Slimani; Fares Nouioua; Alban Desoutter; Bernard Levallois; Frédéric Cuisinier; Hervé Tassery; Elodie Terrer; Hamideh Salehi
The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660 cm-1 over 1690 cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960 cm-1, and the ratio of two Raman peaks of phosphate at 960/950 cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues.