Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hamidreza Arandiyan is active.

Publication


Featured researches published by Hamidreza Arandiyan.


Environmental Science & Technology | 2012

Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3.

Caixia Liu; Liang Chen; Junhua Li; Lei Ma; Hamidreza Arandiyan; Yu Du; Jiayu Xu; Jiming Hao

A series of novel metal-oxide-supported CeO(2) catalysts were prepared via the wet impregnation method, and their NH(3)-SCR activities were investigated. The Ce/TiO(2)-SiO(2) catalyst with a Ti/Si mass ratio of 3/1 exhibited superior NH(3)-SCR activity and high N(2) selectivity in the temperature range of 250-450 °C. The characterization results revealed that the activity enhancement was correlated with the properties of the support material. Cerium was highly dispersed on the TiO(2)-SiO(2) binary metal oxide support, and the interaction of Ti and Si resulted in greater conversion of Ce(4+) to Ce(3+) on the surface of the catalyst compared to that on the single metal oxide supports. As a result of in the increased number of acid sites on Ce/TiO(2)-SiO(2) that resulted from the addition of SiO(2), the NH(3) adsorption capacity was significantly improved. All of these factors played significant roles in the high SCR activity. More importantly, Ce/TiO(2)-SiO(2) exhibited strong resistance to SO(2) and H(2)O poisoning. After the addition of SiO(2), the number of Lewis-acid sites was not decreased, but the number of Brønsted-acid sites on the TiO(2)-SiO(2) carrier was increased. The introduction of SiO(2) further weakened the alkalinity over the surface of the Ce/TiO(2)-SiO(2) catalyst, which resulted in sulfate not easily accumulating on the surface of the Ce/TiO(2)-SiO(2) catalyst in comparison with Ce/TiO(2).


Biofuel Research Journal | 2014

A review on conversion of biomass to biofuel by nanocatalysts

Mandana Akia; Farshad Yazdani; Elahe Motaee; Dezhi Han; Hamidreza Arandiyan

The world’s increasing demand for energy has led to an increase in fossil fuel consumption. However this source of energy is limited and is accompanied with pollution problems. The availability and wide diversity of biomass resources have made them an attractive and promising source of energy. The conversion of biomass to biofuel has resulted in the production of liquid and gaseous fuels that can be used for different means methods such as thermochemical and biological processes. Thermochemical processes as a major conversion route which include gasification and direct liquefaction are applied to convert biomass to more useful biofuel. Catalytic processes are increasingly applied in biofuel development. Nanocatalysts play an important role in improving product quality and achieving optimal operating conditions. Nanocatalysts with a high specific surface area and high catalytic activity may solve the most common problems of heterogeneous catalysts such as mass transfer resistance, time consumption, fast deactivation and inefficiency. In this regard attempts to develop new types of nanocatalysts have been increased. Among the different biofuels produced from biomass, biodiesel has attained a great deal of attention. Nanocatalytic conversion of biomass to biodiesel has been reported using different edible and nonedible feedstock. In most research studies, the application of nanocatalysts improves yield efficiency at relatively milder operating conditions compared to the bulk catalysts.


Scientific Reports | 2015

Well-constructed single-layer molybdenum disulfide nanorose cross-linked by three dimensional-reduced graphene oxide network for superior water splitting and lithium storage property.

Yanyan Zhao; Long Kuai; Yanguo Liu; Pengpeng Wang; Hamidreza Arandiyan; Sufeng Cao; Jie Zhang; Fengyun Li; Qing Wang; Baoyou Geng; Hongyu Sun

A facile one-step solution reaction route for growth of novel MoS2 nanorose cross-linked by 3D rGO network, in which the MoS2 nanorose is constructed by single-layered or few-layered MoS2 nanosheets, is presented. Due to the 3D assembled hierarchical architecture of the ultrathin MoS2 nanosheets and the interconnection of 3D rGO network, as well as the synergetic effects of MoS2 and rGO, the as-prepared MoS2-NR/rGO nanohybrids delivered high specific capacity, excellent cycling and good rate performance when evaluated as an anode material for lithium-ion batteries. Moreover, the nanohybrids also show excellent hydrogen-evolution catalytic activity and durability in an acidic medium, which is superior to MoS2 nanorose and their nanoparticles counterparts.


Catalysis Surveys From Asia | 2015

Recent Advances in Catalysts for Methane Combustion

Jinghuan Chen; Hamidreza Arandiyan; Xiang Gao; Junhua Li

This invited review highlights recent progress in the various classes of heterogeneous catalysts for methane combustion. These combustion catalysts provide a high-efficiency, clean energy source for natural gas vehicles and power plants. This review examines bimetallic systems, and a variety of oxides including single metal oxides, perovskites, spinels, and hexaaluminates. Noble metal mixed oxides exhibit superior catalytic activity due material-specific supports, additives, preparation methods, poisoning, regeneration and surface structure. Kinetic aspects, mechanisms, and the latest studies concerning density functional theory modelling are discussed in conjunction with particle oxidation/reduction mechanisms. The extensive background knowledge on the methane combustion reaction provided by this review provides guidance for researchers with interests ranging from the field of heterogeneous catalysis to the engineering of new high performance materials in environmental and chemical engineering.Graphical Abstract


Advanced Science | 2016

Lanthanide‐Doped Upconversion Nanoparticles: Emerging Intelligent Light‐Activated Drug Delivery Systems

Ali Bagheri; Hamidreza Arandiyan; Cyrille Boyer; May Lim

The development of drug delivery systems (DDSs) using near infrared (NIR) light and upconversion nanoparticles (UCNPs) has generated intensive interest over the past five years. These NIR‐initiated DDSs not only offer a high degree of spatial and temporal determination of therapeutic release but also provide precise control over the released dosage. Furthermore, these nanoplatforms confer several advantages over conventional light‐based DDSs—NIR offers better tissue penetration depth and a reduced risk of cellular photo‐damage caused by exposure to light at high‐energy wavelengths (e.g., ultraviolet light, <400 nm). The development of DDSs that can be activated by low intensity NIR illumination is highly desirable to avoid exposing living tissues to excessive heat that can limit the in vivo application of these DDSs. This encompasses research in three directions: (i) enhancing the quantum yield of the UCNPs; (ii) incorporation of photo‐responsive materials with red‐shifted absorptions into the UCNPs; and (iii) tuning the UCNPs excitation wavelength. This review focuses on recent advances in the development of NIR‐initiated DDS, with emphasis on the use of photo‐responsive compounds and polymeric materials conjugated onto UCNPs. The challenges that limit UCNPs clinical applications, alongside with the aforementioned techniques that have emerged to overcome these limitations, are highlighted.


Journal of Hazardous Materials | 2014

Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene.

Shaohua Xie; Hongxing Dai; Jiguang Deng; Huanggen Yang; Wen Han; Hamidreza Arandiyan; Guangsheng Guo

Three-dimensionally ordered macroporous (3DOM) Mn2O3 and its supported gold (xAu/3DOM Mn2O3, x=1.9-7.5wt%) nanocatalysts were prepared using the polymethyl methacrylate-templating and polyvinyl alcohol-protected reduction methods, respectively. The 3DOM Mn2O3 and xAu/3DOM Mn2O3 samples exhibited a surface area of 34-38m(2)/g. The Au nanoparticles (NPs) with a size of 3.0-3.5nm were uniformly dispersed on the skeletons of 3DOM Mn2O3. The 5.8Au/3DOM Mn2O3 sample performed the best, giving the T90% (the temperature required for a conversion of 90%) of -15°C at space velocity (SV)=20,000mL/(gh) for CO oxidation and 244°C at SV=40,000mL/(gh) for toluene oxidation. The apparent activation energies (30 and 54kJ/mol) over 5.8Au/3DOM Mn2O3 were much lower than those (80 and 95kJ/mol) over 3DOM Mn2O3 for CO and toluene oxidation, respectively. The effects of SV, water vapor, CO2, and SO2 on catalytic activity were also examined. It is concluded that the excellent catalytic performance of 5.8Au/3DOM Mn2O3 was associated with its high oxygen adspecies concentration, good low-temperature reducibility, and strong interaction between Au NPs and 3DOM Mn2O3 as well as high-quality porous architecture.


Environmental Science & Technology | 2016

Three-Dimensional Ordered Mesoporous MnO2-Supported Ag Nanoparticles for Catalytic Removal of Formaldehyde

Bingyang Bai; Qi Qiao; Hamidreza Arandiyan; Junhua Li; Jiming Hao

Three-dimensional (3D) ordered mesoporous Ag/MnO2 catalyst was prepared by impregnation method based on 3D-MnO2 and used for catalytic oxidation of HCHO. Ag nanoparticles are uniformly distributed on the polycrystalline wall of 3D-MnO2. The addition of Ag does not change the 3D ordered mesoporous structure of the Ag/MnO2, but does reduce the pore size and surface area. Ag nanoparticles provide sufficient active site for the oxidation reaction of HCHO, and Ag (111) crystal facets in the Ag/MnO2 are active faces. The 8.9% Ag/MnO2 catalyst shows a higher normalized rate (10.1 nmol·s(-1)·m(-2) at 110 °C) and TOF (0.007 s(-1) at 110 °C) under 1300 ppm of HCHO and 150 000 h(-1) of GHSV, and its apparent activation energy of the reaction is the lowest (39.1 kJ/mol). More Ag active sites, higher low-temperature reducibility, more abundant surface lattice oxygen species, oxygen vacancies, and lattice defects generated from interaction Ag with MnO2 are responsible for the excellent catalytic performance of HCHO oxidation on the 8.9% Ag/MnO2 catalyst. The 8.9% Ag/MnO2 catalyst remained highly active and stable under space velocity increasing from 60 000 to 150 000 h(-1), under initial HCHO concentration increasing from 500 to 1300 ppm, and under the presence of humidity, respectively.


Journal of Materials Chemistry | 2017

Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review

Yuan Wang; Hamidreza Arandiyan; Jason Scott; Ali Bagheri; Hongxing Dai; Rose Amal

Ordered meso/macroporous metal oxides have gained increasing attention in heterogeneous catalysis arising from their large surface areas and pore volumes, elevated catalytic activity and good thermal stability. Compared to nonporous metal oxides, their most prominent feature is the ability to interact with molecules not only at their exterior surface but also within the large interior surface of the material. The past decade has witnessed substantial advances in the synthesis of new porous metal oxides with ordered structures for use in a wide range of applications. By recalling some of the classical fundamentals of porous materials, this review examines the recent developments in ordered meso- and macro-porous metal oxide catalysts for heterogeneous catalysis. Additionally, we outline the current challenges in the field of nanoparticle-based catalysis, including the role played by the morphology (size, shape, and porosity) of ordered meso/macroporous metal oxides, and provide a perspective on the need for further advances in porous materials so that their contribution to heterogeneous catalysis can continue to expand.


Chemical Communications | 2013

Dual-templating synthesis of three-dimensionally ordered macroporous La0.6Sr0.4MnO3-supported Ag nanoparticles: controllable alignments and super performance for the catalytic combustion of methane

Hamidreza Arandiyan; Hongxing Dai; Jiguang Deng; Yuan Wang; Shaohua Xie; Junhua Li

Highly dispersed Ag nanoparticles supported on high-surface-area 3DOM La0.6Sr0.4MnO3 were successfully generated via the dimethoxytetraethylene glycol-assisted gas bubbling reduction route. The macroporous materials showed super catalytic performance for methane combustion.


Environmental Science & Technology | 2011

Roles of Li+ and Zr4+ Cations in the Catalytic Performances of Co1–xMxCr2O4 (M = Li, Zr; x = 0–0.2) for Methane Combustion

Jinghuan Chen; Wenbo Shi; Xueying Zhang; Hamidreza Arandiyan; Dongfang Li; Junhua Li

Co(1-x)M(x)Cr(2)O(4) (M = Li, Zr; x = 0-0.2) catalysts were prepared via the citric acid method and investigated for catalytic combustion of methane. Substitution at tetrahedral (A) sites with monovalent (Li) or tetravalent (Zr) metal ions led to a decrease or increase of the catalytic activity, respectively. The Co(0.95)Zr(0.05)Cr(2)O(4) catalyst proved to be the most active and its catalytic activity reached 90% of methane conversion at 448 °C, which dropped by 66 °C compared with that of the undoped CoCr(2)O(4) catalyst. XRD and Raman results indicated that lithium or zirconium substitution could modify the spinel structure and electronic properties. For lithium-doped catalysts, oxygen deficiency and a strong surface enrichment in lithium and chromium were detected. Zirconium substitution enhanced the reducibility of zirconium-doped catalysts and decreased the strength constant of both the Co-O band and the Cr-O band, which may contribute to the catalytic activity toward methane combustion. In addition, the prevalent catalytic combustion activity of the zirconium-substituted catalysts could be explained by their higher concentration of suprafacial, weakly chemisorbed oxygen.

Collaboration


Dive into the Hamidreza Arandiyan's collaboration.

Top Co-Authors

Avatar

Hongxing Dai

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yuan Wang

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiguang Deng

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hongyu Sun

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Shaohua Xie

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yuxi Liu

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jason Scott

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Huazhen Chang

Renmin University of China

View shared research outputs
Top Co-Authors

Avatar

Kemeng Ji

Beijing University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge