Hamish A. S. Reid
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hamish A. S. Reid.
Astronomy and Astrophysics | 2012
Hamish A. S. Reid; N. Vilmer; Guillaume Aulanier; E. Pariat
We investigate the X-ray and UV emission detected by RHESSI and TRACE in the context of a solar flare on the 16th November 2002 with the goal of better understanding the evolution of the flare. We analysed the characteristics of the X-ray emission in the 12–25 and 25–50 keV energy range while we looked at the UV emission at 1600 A . The flare appears to have two distinct phases of emission separated by a 25-s time delay, with the first phase being energetically more important. We found good temporal and spatial agreement between the 25–50 keV X-rays and the most intense areas of the 1600 A UV emission. We also observed an extended 100-arcsec < 25 keV source that appears coronal in nature and connects two separated UV ribbons later in the flare. Using the observational properties in X-ray and UV wavelengths, we propose two explanations for the flare evolution in relation to the spine/fan magnetic field topology and the accelerated electrons. We find that a combination of quasi separatrix layer reconnection and null-point reconnection is required to account for the observed properties of the X-ray and UV emission.
Astronomy and Astrophysics | 2014
D. E. Morosan; Peter T. Gallagher; Pietro Zucca; R. A. Fallows; Eoin P. Carley; G. Mann; M. M. Bisi; A. Kerdraon; A. A. Konovalenko; Alexander L. MacKinnon; Helmut O. Rucker; B. Thidé; J. Magdalenić; C. Vocks; Hamish A. S. Reid; J. Anderson; A. Asgekar; I. M. Avruch; Marinus Jan Bentum; G. Bernardi; Philip Best; A. Bonafede; Jaap D. Bregman; F. Breitling; J. Broderick; M. Brüggen; H. R. Butcher; B. Ciardi; John Conway; F. de Gasperin
The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio telescopes. Here, the combined high spatial, spectral and temporal resolution of the Low Frequency Array (LOFAR) was used to study solar Type III radio bursts at 30-90 MHz and their association with CMEs. The Sun was imaged with 126 simultaneous tied-array beams within 5 solar radii of the solar centre. This method offers benefits over standard interferometric imaging since each beam produces high temporal (83 ms) and spectral resolution (12.5 kHz) dynamic spectra at an array of spatial locations centred on the Sun. LOFARs standard interferometric output is currently limited to one image per second. Over a period of 30 minutes, multiple Type III radio bursts were observed, a number of which were found to be located at high altitudes (4 solar radii from the solar center at 30 MHz) and to have non-radial trajectories. These bursts occurred at altitudes in excess of values predicted by 1D radial electron density models. The non-radial high altitude Type III bursts were found to be associated with the expanding flank of a CME. The CME may have compressed neighbouring streamer plasma producing larger electron densities at high altitudes, while the non-radial burst trajectories can be explained by the deflection of radial magnetic fields as the CME expanded in the low corona.
Research in Astronomy and Astrophysics | 2014
Hamish A. S. Reid; Heather Ratcliffe
Solar type III radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the solar system. Consequently, they provide information on electron acceleration and transport, and the conditions of the background ambient plasma they travel through. We review the observational properties of type III bursts with an emphasis on recent results and how each property can help identify attributes of electron beams and the ambient background plasma. We also review some of the theoretical aspects of type III radio bursts and cover a number of numerical efforts that simulate electron beam transport through the solar corona and the heliosphere.
The Astrophysical Journal | 2010
Hamish A. S. Reid; Eduard P. Kontar
Solar flare accelerated electron beams propagating away from the Sun can interact with the turbulent interplanetary media, producing plasma waves and Type III radio emission. These electron beams are detected near the Earth with a double power-law energy spectrum. We simulate electron beam propagation from the Sun to the Earth in the weak turbulent regime taking into account the self-consistent generation of plasma waves and subsequent wave interaction with density fluctuations from low-frequency MHD turbulence. The rate at which plasma waves are induced by an unstable electron beam is reduced by background density fluctuations, most acutely when fluctuations have large amplitudes or small wavelengths. This suppression of plasma waves alters the wave distribution which changes the electron beam transport. Assuming a 5/3 Kolmogorov-type power-density spectrum of fluctuations often observed near the Earth, we investigate the corresponding energy spectrum of the electron beam after it has propagated 1 AU. We find a direct correlation between the spectrum of the double power-law below the break energy and the turbulent intensity of the background plasma. For an initial spectral index of 3.5, we find a range of spectra below the break energy between 1.6 and 2.1, with higher levels of turbulence corresponding to higher spectral indices.
Astronomy and Astrophysics | 2011
Hamish A. S. Reid; N. Vilmer; Eduard P. Kontar
We investigate the type III radio bursts and X-ray signatures of accelerated electrons in a well-observed solar flare in order to find the spatial properties of the acceleration region. Combining simultaneous RHESSI hard X-ray flare data and radio data from Phoenix-2 and the Nancay radioheliograph, the outward transport of flare accelerated electrons is analysed. The observations show that the starting frequencies of type III bursts are anti-correlated with the HXR spectral index of solar flare accelerated electrons. We demonstrate both analytically and numerically that the type III burst starting location is dependent upon the accelerated electron spectral index and the spatial acceleration region size, but weakly dependent on the density of energetic electrons for relatively intense electron beams. Using this relationship and the observed anti-correlation, we estimate the height and vertical extent of the acceleration region, giving values of around 50 Mm and 10 Mm, respectively. The inferred acceleration height and size suggest that electrons are accelerated well above the soft X-ray loop-top, which could be consistent with the electron acceleration between 40 Mm and 60 Mm above the flaring loop.
The Astrophysical Journal | 2009
Eduard P. Kontar; Hamish A. S. Reid
Impulsive solar energetic electrons are often observed in the interplanetary space near the Earth and have an attractive diagnostic potential for poorly understood solar flare acceleration processes. We investigate the transport of solar flare energetic electrons in the heliospheric plasma to understand the role of transport to the observed onset and spectral properties of the impulsive solar electron events. The propagation of energetic electrons in solar wind plasma is simulated from the acceleration region at the Sun to the Earth, taking into account self-consistent generation and absorption of electrostatic electron plasma (Langmuir) waves, effects of nonuniform plasma, collisions, and Landau damping. The simulations suggest that the beam-driven plasma turbulence and the effects of solar wind density inhomogeneity play a crucial role and lead to the appearance of (1) a spectral break for a single power-law injected electron spectrum, with the spectrum flatter below the break, (2) apparent early onset of low-energy electron injection, and (3) the apparent late maximum of low-energy electron injection. We show that the observed onsets, spectral flattening at low energies, and formation of a break energy at tens of keV is the direct manifestation of wave-particle interactions in nonuniform plasma of a single accelerated electron population with an initial power-law spectrum.
Astronomy and Astrophysics | 2015
D. E. Morosan; Peter T. Gallagher; Pietro Zucca; Aidan O’Flannagain; R. A. Fallows; Hamish A. S. Reid; J. Magdalenić; G. Mann; M. M. Bisi; A. Kerdraon; A. A. Konovalenko; Alexander L. MacKinnon; Helmut O. Rucker; B. Thidé; C. Vocks; A. Alexov; J. Anderson; A. Asgekar; I. M. Avruch; Marinus Jan Bentum; G. Bernardi; A. Bonafede; F. Breitling; John Broderick; W. N. Brouw; H. R. Butcher; B. Ciardi; E. de Geus; J. Eislöffel; H. Falcke
Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, Low Frequency Array (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 hours. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz/s and a wide range of circular polarisation degrees (2-8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however they possess some of the characteristics of electron-cyclotron maser emission.
Astronomy and Astrophysics | 2014
Heather Ratcliffe; Eduard P. Kontar; Hamish A. S. Reid
Non-thermal electrons accelerated in the solar corona can produce intense coherent radio emission, known as solar type III radio bursts. This intense radio emission is often observed from hundreds of MHz in the corona down to the tens of kHz range in interplanetary space. It involves a chain of physical processes from the generation of Langmuir waves to nonlinear processes of wave-wave interaction. We develop a self-consistent model to calculate radio emission from a non-thermal electron population over large frequency range, including the effects of electron transport, Langmuir wave-electron interaction, the evolution of Langmuir waves due to non-linear wave-wave interactions, Langmuir wave conversion into electromagnetic emission, and finally escape of the electromagnetic waves. For the first time we simulate escaping radio emission over a broad frequency range from 500~MHz down to a few MHz and infer key properties of the radio emission observed: the onset (starting) frequency, {identification as fundamental or harmonic emission}, peak flux density, instantaneous frequency bandwidth, and timescales for rise and decay. Comparing with the observations, these large scale simulations enable us to identify the processes governing the key type III solar radio burst characteristics.
Astronomy and Astrophysics | 2014
Hamish A. S. Reid; N. Vilmer; Eduard P. Kontar
Aims. Using simultaneous X-ray and radio observations from solar flares, we investigate the link between the type III radio burst starting frequency and hard X-ray spectral index. For a proportion of events the relation derived between the starting height (frequency) of type III radio bursts and the electron beam velocity spectral index (deduced from X-rays) is used to infer the spatial properties (height and size) of the electron beam acceleration region. Both quantities can be related to the distance travelled before an electron beam becomes unstable to Langmuir waves. Methods. To obtain a list of suitable events we considered the RHESSI catalogue of X-ray flares and the Phoenix 2 catalogue of type III radio bursts. From the 200 events that showed both type III and X-ray signatures, we selected 30 events which had simultaneous emission in both wavelengths, good signal to noise in the X-ray domain and >20 s duration. Results. We find that >50% of the selected events show a good correlation between the starting frequencies of the groups of type III bursts and the hard X-ray spectral indices. A low-high-low trend for the starting frequency of type III bursts is frequently observed. Assuming a background electron density model and the thick target approximation for X-ray observations, this leads to a correlation between starting heights of the type III emission and the beam electron spectral index. Using this correlation we infer the altitude and vertical extents of the flare acceleration regions. We find heights from 183 Mm down to 25 Mm while the sizes range from 13 Mm to 2 Mm. These values agree with previous work that places an extended flare acceleration region high in the corona. We also analyse the assumptions that are required to obtain our estimates and explore possible extensions to our assumed model. We discuss these results with respect to the acceleration heights and sizes derived from X-ray observations alone.
Astronomy and Astrophysics | 2015
Hamish A. S. Reid; Eduard P. Kontar
Understanding the properties of type III radio bursts in the solar corona and interplanetary space is one of the best ways to remotely deduce the characteristics of solar accelerated electron beams and the solar wind plasma. One feature of all type III bursts is the lowest frequency they reach (or stopping frequency). This feature reflects the distance from the Sun that an electron beam can drive the observable plasma emission mechanism. The stopping frequency has never been systematically studied before from a theoretical perspective. Using numerical kinetic simulations, we explore the different parameters that dictate how far an electron beam can travel before it stops inducing a significant level of Langmuir waves, responsible for plasma radio emission. We use the quasilinear approach to model self-consistently the resonant interaction between electrons and Langmuir waves in inhomogeneous plasma, and take into consideration the expansion of the guiding magnetic flux tube and the turbulent density of the interplanetary medium. We find that the rate of radial expansion has a significant effect on the distance an electron beam travels before enhanced leves of Langmuir waves, and hence radio waves, cease. Radial expansion of the guiding magnetic flux tube rarefies the electron stream to the extent that the density of non-thermal electrons is too low to drive Langmuir wave production. The initial conditions of the electron beam have a significant effect, where decreasing the beam density or increasing the spectral index of injected electrons would cause higher type III stopping frequencies. We also demonstrate how the intensity of large-scale density fluctuations increases the highest frequency that Langmuir waves can be driven by the beam and how the magnetic field geometry can be the cause of type III bursts only observed at high coronal frequencies.