Han A Mulder
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Han A Mulder.
Genetics Research | 2010
William G. Hill; Han A Mulder
Environmental variation (VE) in a quantitative trait - variation in phenotype that cannot be explained by genetic variation or identifiable genetic differences - can be regarded as being under some degree of genetic control. Such variation may be either between repeated expressions of the same trait within individuals (e.g. for bilateral traits), in the phenotype of different individuals, where variation within families may differ, or in both components. We consider alternative models for defining the distribution of phenotypes to include a component due to heterogeneity of VE. We review evidence for the presence of genetic variation in VE and estimates of its magnitude. Typically the heritability of VE is under 10%, but its genetic coefficient of variation is typically 20% or more. We consider experimental designs appropriate for estimating genetic variance in VE and review alternative methods of estimation. We consider the effects of stabilizing and directional selection on VE and review both the forces that might be maintaining levels of VE and heritability found in populations. We also evaluate the opportunities for reducing VE in breeding programmes. Although empirical and theoretical studies have increased our understanding of genetic control of environmental variance, many issues remain unresolved.
Genetics Selection Evolution | 2008
Han A Mulder; P. Bijma; William G. Hill
In some situations, it is worthwhile to change not only the mean, but also the variability of traits by selection. Genetic variation in residual variance may be utilised to improve uniformity in livestock populations by selection. The objective was to investigate the effects of genetic parameters, breeding goal, number of progeny per sire and breeding scheme on selection responses in mean and variance when applying index selection. Genetic parameters were obtained from the literature. Economic values for the mean and variance were derived for some standard non-linear profit equations, e.g. for traits with an intermediate optimum. The economic value of variance was in most situations negative, indicating that selection for reduced variance increases profit. Predicted responses in residual variance after one generation of selection were large, in some cases when the number of progeny per sire was at least 50, by more than 10% of the current residual variance. Progeny testing schemes were more efficient than sib-testing schemes in decreasing residual variance. With optimum traits, selection pressure shifts gradually from the mean to the variance when approaching the optimum. Genetic improvement of uniformity is particularly interesting for traits where the current population mean is near an intermediate optimum.
Genetics Selection Evolution | 2013
Han A Mulder; Lars Rönnegård; W. Freddy Fikse; Roel F. Veerkamp; E. Strandberg
BackgroundGenetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model.MethodsWe assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters.ResultsDesigns with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed.ConclusionThe algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.
Genetics Selection Evolution | 2011
M.P.L. Calus; Han A Mulder; J.W.M. Bastiaansen
BackgroundUsing SNP genotypes to apply genomic selection in breeding programs is becoming common practice. Tools to edit and check the quality of genotype data are required. Checking for Mendelian inconsistencies makes it possible to identify animals for which pedigree information and genotype information are not in agreement.MethodsStraightforward tests to detect Mendelian inconsistencies exist that count the number of opposing homozygous marker (e.g. SNP) genotypes between parent and offspring (PAR-OFF). Here, we develop two tests to identify Mendelian inconsistencies between sibs. The first test counts SNP with opposing homozygous genotypes between sib pairs (SIBCOUNT). The second test compares pedigree and SNP-based relationships (SIBREL). All tests iteratively remove animals based on decreasing numbers of inconsistent parents and offspring or sibs. The PAR-OFF test, followed by either SIB test, was applied to a dataset comprising 2,078 genotyped cows and 211 genotyped sires. Theoretical expectations for distributions of test statistics of all three tests were calculated and compared to empirically derived values. Type I and II error rates were calculated after applying the tests to the edited data, while Mendelian inconsistencies were introduced by permuting pedigree against genotype data for various proportions of animals.ResultsBoth SIB tests identified animal pairs for which pedigree and genomic relationships could be considered as inconsistent by visual inspection of a scatter plot of pairwise pedigree and SNP-based relationships. After removal of 235 animals with the PAR-OFF test, SIBCOUNT (SIBREL) identified 18 (22) additional inconsistent animals.Seventeen animals were identified by both methods. The numbers of incorrectly deleted animals (Type I error), were equally low for both methods, while the numbers of incorrectly non-deleted animals (Type II error), were considerably higher for SIBREL compared to SIBCOUNT.ConclusionsTests to remove Mendelian inconsistencies between sibs should be preceded by a test for parent-offspring inconsistencies. This parent-offspring test should not only consider parent-offspring pairs based on pedigree data, but also those based on SNP information. Both SIB tests could identify pairs of sibs with Mendelian inconsistencies. Based on type I and II error rates, counting opposing homozygotes between sibs (SIBCOUNT) appears slightly more precise than comparing genomic and pedigree relationships (SIBREL) to detect Mendelian inconsistencies between sibs.
Journal of Animal Science | 2012
J.J. Windig; Han A Mulder; J. ten Napel; E.F. Knol; P. K. Mathur; R. E. Crump
The purpose of this study was to evaluate measures of boar (Sus scrofa) taint as potential selection criteria to reduce boar taint so that castration of piglets will become unnecessary. Therefore, genetic parameters of boar taint measures and their genetic correlations with finishing traits were estimated. In particular, the usefulness of a human panel assessing boar taint (human nose score) was compared with chemical assessment of boar taint compounds, androstenone, skatole, and indole. Heritability estimates for androstenone, skatole, and indole were 0.54, 0.41, and 0.33, respectively. The heritability for the human nose score using multiple panelists was 0.12, and ranged from 0.12 to 0.19 for individual panelists. Genetic correlations between scores of panelists were generally high up to unity. The genetic correlations between human nose scores and the boar taint compounds ranged from 0.64 to 0.999. The boar taint compounds and human nose scores had low or favorable genetic correlations with finishing traits. Selection index estimates indicated that the effectiveness of a breeding program based on human nose scores can be comparable to a breeding program based on the boar taint compounds themselves. Human nose scores can thus be used as a cheap and fast alternative for the costly determination of boar taint compounds, needed in breeding pigs without boar taint.
Genetics Selection Evolution | 2015
Panya Sae-Lim; Antti Kause; Matti Janhunen; Harri Vehviläinen; Heikki Koskinen; Bjarne Gjerde; Marie Lillehammer; Han A Mulder
BackgroundWhen rainbow trout from a single breeding program are introduced into various production environments, genotype-by-environment (GxE) interaction may occur. Although growth and its uniformity are two of the most important traits for trout producers worldwide, GxE interaction on uniformity of growth has not been studied. Our objectives were to quantify the genetic variance in body weight (BW) and its uniformity and the genetic correlation (rg) between these traits, and to investigate the degree of GxE interaction on uniformity of BW in breeding (BE) and production (PE) environments using double hierarchical generalized linear models. Log-transformed data were also used to investigate whether the genetic variance in uniformity of BW, GxE interaction on uniformity of BW, and rg between BW and its uniformity were influenced by a scale effect.ResultsAlthough heritability estimates for uniformity of BW were low and of similar magnitude in BE (0.014) and PE (0.012), the corresponding coefficients of genetic variation reached 19 and 21%, which indicated a high potential for response to selection. The genetic re-ranking for uniformity of BW (rg = 0.56) between BE and PE was moderate but greater after log-transformation, as expressed by the low rg (-0.08) between uniformity in BE and PE, which indicated independent genetic rankings for uniformity in the two environments when the scale effect was accounted for. The rg between BW and its uniformity were 0.30 for BE and 0.79 for PE but with log-transformed BW, these values switched to -0.83 and -0.62, respectively.ConclusionsGenetic variance exists for uniformity of BW in both environments but its low heritability implies that a large number of relatives are needed to reach even moderate accuracy of selection. GxE interaction on uniformity is present for both environments and sib-testing in PE is recommended when the aim is to improve uniformity across environments. Positive and negative rg between BW and its uniformity estimated with original and log-transformed BW data, respectively, indicate that increased BW is genetically associated with increased variance in BW but with a decrease in the coefficient of variation. Thus, the scale effect substantially influences the genetic parameters of uniformity, especially the sign and magnitude of its rg.
Journal of Animal Science | 2013
G. Rose; A. Kause; Han A Mulder; J. H. J. van der Werf; A. N. Thompson; M.B. Ferguson; J.A.M. van Arendonk
Sheep in Australia experience periods with different feed supply causing them to gain and lose BW during the year. It is more efficient if ewes lose less BW during periods of poor nutrition and gain more BW during periods of good nutrition. We investigated whether BW loss during periods of poor nutrition and BW gain during periods of good nutrition are genetically different traits. We used BW measurements from 2,336 adult Merino ewes managed over 5 yr in a Mediterranean climate in Katanning, Australia. Body weight loss is the difference between 2 BW measured 42 d apart during mating, a period of poor nutrition. Body weight gain is the difference between 2 BW measured 131 d apart during a period of good nutrition between prelambing and weaning. We estimated variance compnents of BW change using 3 methods: 1) as a trait calculated by subtracting the first BW from the second, 2) multivariate analysis of BW traits, and 3) random regression analysis of BW. The h(2) and genetic correlations (rg) estimated using the multivariate analysis of BW and the BW change trait were very similar whereas the random regression analysis estimated lower heritabilities and more extreme negative genetic correlations between BW loss and gain. The multivariate model fitted the data better than random regression based on Akaike and Bayesian information criterion so we considered the results of the multivariate model to be more reliable. The heritability of BW loss (h(2) = 0.05-0.16) was smaller than that of BW gain (h(2) = 0.14-0.37). Body weight loss and gain can be bred for independently at 2 and 4 yr of age (rg = 0.03 and -0.04) whereas at 3 yr of age ewes that genetically lost more BW gained more BW (rg = -0.41). Body weight loss is genetically not the same trait at different ages (rg range 0.13-0.39). Body weight gain at age 3 yr is genetically the same trait at age 4 yr (rg = 0.99) but is different between age 2 yr and the older ages (rg = 0.53 and 0.51). These results suggest that as the ewes reach their mature BW, BW gain at different ages becomes the same trait. This does not apply to BW loss. We conclude that BW change could be included in breeding programs to breed adult Merino ewes that are more tolerant to variation in feed supply.
Mitigation and Adaptation Strategies for Global Change | 2011
M.P.L. Calus; Han A Mulder; Roel F. Veerkamp
BackgroundGenomic selection is particularly beneficial for difficult or expensive to measure traits. Since multi-trait selection is an important tool to deal with such cases, an important question is what the added value is of multi-trait genomic selection.MethodsThe simulated dataset, including a quantitative and binary trait, was analyzed with four univariate and bivariate linear models to predict breeding values for juvenile animals. Two models estimated variance components with REML using a numerator (A), or SNP based relationship matrix (G). Two SNP based Bayesian models included one (BayesA) or two distributions (BayesC) for estimated SNP effects. The bivariate BayesC model sampled QTL probabilities for each SNP conditional on both traits. Genotypes were permuted 2,000 times against phenotypes and pedigree, to obtain significance thresholds for posterior QTL probabilities. Genotypes were permuted rather than phenotypes, to retain relationships between pedigree and phenotypes, such that polygenic effects could still be estimated.ResultsCorrelations between estimated breeding values (EBV) of different SNP based models, for juvenile animals, were greater than 0.93 (0.87) for the quantitative (binary) trait. Estimated genetic correlation was 0.71 (0.66) for model G (A). Accuracies of breeding values of SNP based models were for both traits highest for BayesC and lowest for G. Accuracies of breeding values of bivariate models were up to 0.08 higher than for univariate models.The bivariate BayesC model detected 14 out of 32 QTL for the quantitative trait, and 8 out of 22 for the binary trait.ConclusionsAccuracy of EBV clearly improved for both traits using bivariate compared to univariate models. BayesC achieved highest accuracies of EBV and was also one of the methods that found most QTL. Permuting genotypes against phenotypes and pedigree in BayesC provided an effective way to derive significance thresholds for posterior QTL probabilities.
Genetics Selection Evolution | 2010
Han A Mulder; M.P.L. Calus; Roel F. Veerkamp
BackgroundIn livestock populations, missing genotypes on a large proportion of animals are a major problem to implement the estimation of marker-assisted breeding values using haplotypes. The objective of this article is to develop a method to predict haplotypes of animals that are not genotyped using mixed model equations and to investigate the effect of using these predicted haplotypes on the accuracy of marker-assisted breeding value estimation.MethodsFor genotyped animals, haplotypes were determined and for each animal the number of haplotype copies (nhc) was counted, i.e. 0, 1 or 2 copies. In a mixed model framework, nhc for each haplotype were predicted for ungenotyped animals as well as for genotyped animals using the additive genetic relationship matrix. The heritability of nhc was assumed to be 0.99, allowing for minor genotyping and haplotyping errors. The predicted nhc were subsequently used in marker-assisted breeding value estimation by applying random regression on these covariables. To evaluate the method, a population was simulated with one additive QTL and an additive polygenic genetic effect. The QTL was located in the middle of a haplotype based on SNP-markers.ResultsThe accuracy of predicted haplotype copies for ungenotyped animals ranged between 0.59 and 0.64 depending on haplotype length. Because powerful BLUP-software was used, the method was computationally very efficient. The accuracy of total EBV increased for genotyped animals when marker-assisted breeding value estimation was compared with conventional breeding value estimation, but for ungenotyped animals the increase was marginal unless the heritability was smaller than 0.1. Haplotypes based on four markers yielded the highest accuracies and when only the nearest left marker was used, it yielded the lowest accuracy. The accuracy increased with increasing marker density. Accuracy of the total EBV approached that of gene-assisted BLUP when 4-marker haplotypes were used with a distance of 0.1 cM between the markers.ConclusionsThe proposed method is computationally very efficient and suitable for marker-assisted breeding value estimation in large livestock populations including effects of a number of known QTL. Marker-assisted breeding value estimation using predicted haplotypes increases accuracy especially for traits with low heritability.
Journal of Dairy Science | 2013
Jérémie Vandenplas; Catherine Bastin; Nicolas Gengler; Han A Mulder
Animals that are robust to environmental changes are desirable in the current dairy industry. Genetic differences in micro-environmental sensitivity can be studied through heterogeneity of residual variance between animals. However, residual variance between animals is usually assumed to be homogeneous in traditional genetic evaluations. The aim of this study was to investigate genetic heterogeneity of residual variance by estimating variance components in residual variance for milk yield, somatic cell score, contents in milk (g/dL) of 2 groups of milk fatty acids (i.e., saturated and unsaturated fatty acids), and the content in milk of one individual fatty acid (i.e., oleic acid, C18:1 cis-9), for first-parity Holstein cows in the Walloon Region of Belgium. A total of 146,027 test-day records from 26,887 cows in 747 herds were available. All cows had at least 3 records and a known sire. These sires had at least 10 cows with records and each herd × test-day had at least 5 cows. The 5 traits were analyzed separately based on fixed lactation curve and random regression test-day models for the mean. Estimation of variance components was performed by running iteratively expectation maximization-REML algorithm by the implementation of double hierarchical generalized linear models. Based on fixed lactation curve test-day mean models, heritability for residual variances ranged between 1.01×10(-3) and 4.17×10(-3) for all traits. The genetic standard deviation in residual variance (i.e., approximately the genetic coefficient of variation of residual variance) ranged between 0.12 and 0.17. Therefore, some genetic variance in micro-environmental sensitivity existed in the Walloon Holstein dairy cattle for the 5 studied traits. The standard deviations due to herd × test-day and permanent environment in residual variance ranged between 0.36 and 0.45 for herd × test-day effect and between 0.55 and 0.97 for permanent environmental effect. Therefore, nongenetic effects also contributed substantially to micro-environmental sensitivity. Addition of random regressions to the mean model did not reduce heterogeneity in residual variance and that genetic heterogeneity of residual variance was not simply an effect of an incomplete mean model.