Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Han-Chun Hung is active.

Publication


Featured researches published by Han-Chun Hung.


Marine Drugs | 2012

Sinularin from Indigenous Soft Coral Attenuates Nociceptive Responses and Spinal Neuroinflammation in Carrageenan-Induced Inflammatory Rat Model

Shi-Ying Huang; Nan-Fu Chen; Wu-Fu Chen; Han-Chun Hung; Hsin-Pai Lee; Yen-You Lin; Hui-Min Wang; Ping-Jyun Sung; Jyh-Horng Sheu; Zhi-Hong Wen

Three decades ago, the marine-derived compound sinularin was shown to have anti-edematous effects on paw edema induced by carrageenan or adjuvant. To the best of our knowledge, no new studies were conducted to explore the bioactivity of sinularin until we reported the analgesic properties of sinularin based on in vivo experiments. In the present study, we found that sinularin significantly inhibits the upregulation of proinflammatory proteins, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) and upregulates the production of transforming growth factor-β (TGF-β) in lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells according to western blot analysis. We found that subcutaneous (s.c.) administration of sinularin (80 mg/kg) 1 h before carrageenan injection significantly inhibited carrageenan-induced nociceptive behaviors, including thermal hyperalgesia, mechanical allodynia, cold allodynia, and hindpaw weight-bearing deficits. Further, s.c. sinularin (80 mg/kg) significantly inhibited carrageenan-induced microglial and astrocyte activation as well as upregulation of iNOS in the dorsal horn of the lumbar spinal cord. Moreover, s.c. sinularin (80 mg/kg) inhibited carrageenan-induced tissue inflammatory responses, redness and edema of the paw, and leukocyte infiltration. The results of immunohistochemical studies indicate that s.c. sinularin (80 mg/kg) could upregulate production of TGF-β1 in carrageenan-induced inflamed paw tissue. The present results demonstrate that systemic sinularin exerts analgesic effects at the behavioral and spinal levels, which are associated with both inhibition of leukocyte infiltration and upregulation of TGF-β1.


Naunyn-schmiedebergs Archives of Pharmacology | 2012

Neuroprotection by marine-derived compound, 11-dehydrosinulariolide, in an in vitro Parkinson’s model: a promising candidate for the treatment of Parkinson’s disease

Wu-Fu Chen; Chiranjib Chakraborty; Chun-Sung Sung; Chien-Wei Feng; Yen-Hsuan Jean; Yen-You Lin; Han-Chun Hung; Tzu-Yi Huang; Shi-Ying Huang; Thung-Ming Su; Ping-Jyun Sung; Jyh-Horng Sheu; Zhi-Hong Wen

Parkinson’s disease (PD) is a neurodegenerative disease characterized by tremor, rigidity, bradykinesia, and gait impairment. So far, very few pharmacological agents have been isolated or developed that effectively inhibit the progression of PD. However, several studies have demonstrated that inflammatory processes play critical roles in PD. Therefore, anti-inflammatory agents may suppress disease progression in PD. 11-Dehydrosinulariolide was isolated from cultured soft corals. The anti-inflammatory effect of this molecule has been observed through suppression of the expression of two main pro-inflammatory proteins: inducible nitric oxide synthase and cyclooxygenase-2, in lipopolysaccharide-stimulated macrophage cells. We also found that 11-dehydrosinulariolide significantly reduced 6-hydroxydopamine (6-OHDA)-induced cytotoxicity and apoptosis in a human neuroblastoma cell line (SH-SY5Y). The pharmacological activity of this compound has been studied, and it is associated with the inhibition of 6-OHDA-induced activation of caspase-3 and translocation of nuclear factor kappa B. 11-Dehydrosinulariolide increased the activation of survival-signaling phospho-Akt but not phospho-ERK. The neuroprotective effect of 11-dehydrosinulariolide was assessed here using 6-OHDA-treated SH-SY5Y cells, wherein neuroprotection is mediated through regulation of phosphatidylinositol 3-kinase (PI3K). Furthermore, 11-dehydrosinulariolide caused a significant decrease in caspase-3/7 activity in comparison to the 6-OHDA-treated group, indicating that 11-dehydrosinulariolide has neuroprotective properties. We conclude that 11-dehydrosinulariolide is a promising candidate for the treatment of Parkinson’s disease through its anti-apoptotic and anti-inflammatory action via PI3K signaling.


Zebrafish | 2014

Effects of 6-hydroxydopamine exposure on motor activity and biochemical expression in zebrafish (Danio rerio) larvae.

Chien-Wei Feng; Zhi-Hong Wen; Shi-Ying Huang; Han-Chun Hung; Chun-Hong Chen; San-Nan Yang; Nan-Fu Chen; Hui-Min Wang; Chung-Der Hsiao; Wu-Fu Chen

Parkinsons disease (PD) is a neurodegenerative disease that is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. However, current treatments for PD are mainly palliative. Recently, researchers discovered that neurotoxins can induce Parkinsonian-like symptoms in zebrafish. No study to date has investigated the characteristics of PD, such as neuroinflammation factors, oxidative stress, or ubiquitin dysfunction, in this model. Therefore, the current study was aimed at utilizing commonly used clinical drugs, minocycline, vitamin E, and Sinemet, to test the usefulness of this model. Previous studies had indicated that DA cell loss was greater with 6-hydroxydopamine (6-OHDA) than with other neurotoxins. Thus, we first challenged zebrafish with 6-OHDA immersion and found a significant reduction in zebrafish locomotor activity; we then reversed the locomotor disruptions by treatment with vitamin E, Sinemet, or minocycline. The present study also analyzed the mRNA expression of parkin, pink1, and cd-11b, because the expression of these molecular targets has been shown to result in attenuation in mammalian models of PD. Vitamin E, Sinemet, and minocycline significantly reversed 6-OHDA-induced changes of parkin, pink1, and cd-11b mRNA expression in zebrafish. Moreover, we assessed tyrosine hydroxylase (TH) expression to confirm the therapeutic effects of vitamin E tested on this PD model and established that vitamin E reversed the 6-OHDA-induced damage on TH expression. Our results provide some support for the validity of this in vivo Parkinsons model, and we hope that this model will be more widely used in the future.


Experimental Neurology | 2016

The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury

Chun-Hong Chen; Chun-Sung Sung; Shi-Ying Huang; Chien-Wei Feng; Han-Chun Hung; San-Nan Yang; Nan-Fu Chen; Ming-Hong Tai; Zhi-Hong Wen; Wu-Fu Chen

Several studies suggest that glial scars pose as physical and chemical barriers that limit neurite regeneration after spinal cord injury (SCI). Evidences suggest that the activation of the PI3K/Akt/mTOR signaling pathway is involved in glial scar formation. Therefore, inhibition of the PI3K/Akt/mTOR pathway may beneficially attenuate glial scar formation after SCI. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates the PI3K/Akt/mTOR pathway. Therefore, we hypothesized that the overexpression of PTEN in the spinal cord will have beneficial effects after SCI. In the present study, we intrathecally injected a recombinant adenovirus carrying the pten gene (Ad-PTEN) to cause overexpression of PTEN in rats with contusion injured spinal cords. The results suggest overexpression of PTEN in spinal cord attenuated glial scar formation and led to improved locomotor function after SCI. Overexpression of PTEN following SCI attenuated gliosis, affected chondroitin sulfate proteoglycan expression, and improved axon regeneration into the lesion site. Furthermore, we suggest that the activation of the PI3K/Akt/mTOR pathway in astrocytes at 3 days after SCI may be involved in glial scar formation. Because delayed treatment with Ad-PTEN enhanced motor function recovery more significantly than immediate treatment with Ad-PTEN after SCI, the results suggest that the best strategy to attenuate glial scar formation could be to introduce 3 days after SCI. This studys findings thus have positive implications for patients who are unable to receive immediate medical attention after SCI.


Marine Drugs | 2014

Flexibilide Obtained from Cultured Soft Coral Has Anti-Neuroinflammatory and Analgesic Effects through the Upregulation of Spinal Transforming Growth Factor-β1 in Neuropathic Rats

Nan-Fu Chen; Shi-Ying Huang; Ching-Hsiang Lu; Chun-Lin Chen; Chien-Wei Feng; Chun-Hong Chen; Han-Chun Hung; Yen-You Lin; Ping-Jyun Sung; Chun-Sung Sung; San-Nan Yang; Hui-Min David Wang; Yu-Chia Chang; Jyh-Horng Sheu; Wu-Fu Chen; Zhi-Hong Wen

Chronic neuroinflammation plays an important role in the development and maintenance of neuropathic pain. The compound flexibilide, which can be obtained from cultured soft coral, possesses anti-inflammatory and analgesic effects in the rat carrageenan peripheral inflammation model. In the present study, we investigated the antinociceptive properties of flexibilide in the rat chronic constriction injury (CCI) model of neuropathic pain. First, we found that a single intrathecal (i.t.) administration of flexibilide significantly attenuated CCI-induced thermal hyperalgesia at 14 days after surgery. Second, i.t. administration of 10-μg flexibilide twice daily was able to prevent the development of thermal hyperalgesia and weight-bearing deficits in CCI rats. Third, i.t. flexibilide significantly inhibited CCI-induced activation of microglia and astrocytes, as well as the upregulated proinflammatory enzyme, inducible nitric oxide synthase, in the ipsilateral spinal dorsal horn. Furthermore, flexibilide attenuated the CCI-induced downregulation of spinal transforming growth factor-β1 (TGF-β1) at 14 days after surgery. Finally, i.t. SB431542, a selective inhibitor of TGF-β type I receptor, blocked the analgesic effects of flexibilide in CCI rats. Our results suggest that flexibilide may serve as a therapeutic agent for neuropathic pain. In addition, spinal TGF-β1 may be involved in the anti-neuroinflammatory and analgesic effects of flexibilide.


PLOS ONE | 2013

A Soft Coral-Derived Compound, 11-epi-Sinulariolide Acetate Suppresses Inflammatory Response and Bone Destruction in Adjuvant-Induced Arthritis

Yen-You Lin; Yen-Hsuan Jean; Hsin-Pai Lee; Wu-Fu Chen; Yu-Min Sun; Jui-Hsin Su; Yi Lu; Shi-Ying Huang; Han-Chun Hung; Ping-Jyun Sung; Jyh-Horng Sheu; Zhi-Hong Wen

In recent years, a significant number of metabolites with potent anti-inflammatory properties have been discovered from marine organisms, and several of these compounds are now under clinical trials. In the present study, we isolated 11-epi-sinulariolide acetate (Ya-s11), a cembrane-type compound with anti-inflammatory effects, from the Formosa soft coral Sinularia querciformis. Preliminary screening revealed that Ya-s11 significantly inhibited the expression of the proinflammatory proteins induced nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-stimulated murine macrophages. We also examined the therapeutic effects of Ya-s11 on adjuvant-induced arthritis (AIA) in female Lewis rats, which demonstrate features similar to human rheumatoid arthritis (RA). Animal experiments revealed that Ya-s11 (subcutaneously 9 mg/kg once every 2 days from day 7 to day 28 postimmunization) significantly inhibited AIA characteristics. Moreover, Ya-s11 also attenuated protein expression of cathepsin K, matrix metalloproteinases-9 (MMP-9), tartrate-resistant acid phosphatase (TRAP), and tumor necrosis factor-α (TNF-α) in ankle tissues of AIA-rats. Based on its attenuation of the expression of proinflammatory proteins and disease progression in AIA rats, the marine-derived compound Ya-s11 may serve as a useful therapeutic agent for the treatment of RA.


Neuroscience | 2013

Intrathecal granulocyte colony-stimulating factor modulate glial cell line-derived neurotrophic factor and vascular endothelial growth factor A expression in glial cells after experimental spinal cord ischemia.

C.-H. Chen; Shi-Ying Huang; N.-F. Chen; Chien-Wei Feng; Han-Chun Hung; Chun-Sung Sung; Y.-H. Jean; Zhi-Hong Wen; W.-F. Chen

The hematopoietic growth factor, granulocyte colony-stimulating factor (G-CSF), has become one of the few growth factors approved for clinical use. It has therapeutic potential for numerous neurodegenerative diseases; however, at present the cellular effects of G-CSF on the central nervous system remain unclear and in need of investigation. In the present study, we used spinal cord ischemia, a neurodegenerative model, to examine the effects of intrathecal (i.t.) G-CSF on glial cell (microglia and astrocyte) activation and neuroprotective factor expression, including glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor A (VEGF-A) protein expression. Our results indicate that i.t. G-CSF could enhance ischemia-induced microglial activation and inhibit ischemia-induced astrocyte activation. Both GDNF and VEGF-A are upregulated after injury, and i.t. G-CSF could enhance GDNF and VEGF-A expressions after injury. Interestingly, our results indicate that performing i.t. G-CSF alone on normal animals could have the effect of microglial and astrocyte activation and enhanced GDNF and VEGF-A expressions. Furthermore, through laser scanning confocal microscopy, we found that astrocytes may contribute to the majority of GDNF and VEGF-A expressions of G-CSF after spinal cord ischemia. Overall, this G-CSF-induced upregulation suggests that activation of endogenous neuroprotective mechanisms could resist neurodegenerative insults. These observations demonstrate the cellular mechanism of i.t. G-CSF after spinal cord ischemia and confirm the neuroprotective effect of G-CSF after spinal cord ischemia injury.


PLOS ONE | 2014

A novel zebrafish model to provide mechanistic insights into the inflammatory events in carrageenan-induced abdominal edema.

Shi-Ying Huang; Chien-Wei Feng; Han-Chun Hung; Chiranjib Chakraborty; Chun-Hong Chen; Wu-Fu Chen; Yen-Hsuan Jean; Hui-Min David Wang; Chun-Sung Sung; Yu-Min Sun; Chang-Yi Wu; Wangta Liu; Chung-Der Hsiao; Zhi-Hong Wen

A suitable small animal model may help in the screening and evaluation of new drugs, especially those from natural products, which can be administered at lower dosages, fulfilling an urgent worldwide need. In this study, we explore whether zebrafish could be a model organism for carrageenan-induced abdominal edema. The research results showed that intraperitoneal (i.p.) administration of 1.5% λ-carrageenan in a volume of 20 µL significantly increased abdominal edema in adult zebrafish. Levels of the proinflammatory proteins tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) were increased in carrageenan-injected adult zebrafish during the development of abdominal edema. An associated enhancement was also observed in the leukocyte marker, myeloperoxidase (MPO). To support these results, we further observed that i.p. methylprednisolone (MP; 1 µg), a positive control, significantly inhibited carrageenan-induced inflammation 24 h after carrageenan administration. Furthermore, i.p. pretreatment with either an anti-TNF-α antibody (1∶5 dilution in a volume of 20 µL) or the iNOS-selective inhibitor aminoguanidine (AG; 1 µg) inhibited carrageenan-induced abdominal edema in adult zebrafish. This new animal model is uncomplicated, easy to develop, and involves a straightforward inducement of inflammatory edema for the evaluation of small volumes of drugs or test compounds.


Marine Drugs | 2016

Neuroprotective Effect of the Marine-Derived Compound 11-Dehydrosinulariolide through DJ-1-Related Pathway in In Vitro and In Vivo Models of Parkinson’s Disease

Chien-Wei Feng; Han-Chun Hung; Shi-Ying Huang; Chun-Hong Chen; Yun-Ru Chen; Chun-Yu Chen; San-Nan Yang; Hui-Min David Wang; Ping-Jyun Sung; Jyh-Horng Sheu; Kuan-Hao Tsui; Wu-Fu Chen; Zhi-Hong Wen

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by tremor, rigidity, bradykinesia, and gait impairment. In a previous study, we found that the marine-derived compound 11-dehydrosinulariolide (11-de) upregulates the Akt/PI3K pathway to protect cells against 6-hydroxydopamine (6-OHDA)-mediated damage. In the present study, SH-SY5Y, zebrafish and rats were used to examine the therapeutic effect of 11-de. The results revealed the mechanism by which 11-de exerts its therapeutic effect: the compound increases cytosolic or mitochondrial DJ-1 expression, and then activates the downstream Akt/PI3K, p-CREB, and Nrf2/HO-1 pathways. Additionally, we found that 11-de could reverse the 6-OHDA-induced downregulation of total swimming distance in a zebrafish model of PD. Using a rat model of PD, we showed that a 6-OHDA-induced increase in the number of turns, and increased time spent by rats on the beam, could be reversed by 11-de treatment. Lastly, we showed that 6-OHDA-induced attenuation in tyrosine hydroxylase (TH), a dopaminergic neuronal marker, in zebrafish and rat models of PD could also be reversed by treatment with 11-de. Moreover, the patterns of DJ-1 expression observed in this study in the zebrafish and rat models of PD corroborated the trend noted in previous in vitro studies.


International Journal of Molecular Sciences | 2015

Dihydroaustrasulfone Alcohol (WA-25) Impedes Macrophage Foam Cell Formation by Regulating the Transforming Growth Factor-β1 Pathway.

Yi-Chen Wang; Han-Chun Hung; Chien-Wei Feng; Shi-Ying Huang; Chun-Hong Chen; Yen-You Lin; Yao Chang Chen; San-Nan Yang; Jui-Hsin Su; Jyh-Horng Sheu; Zhi-Hong Wen

Atherosclerosis is considered an inflammatory disease. However, clinically used anti-atherosclerotic drugs, such as simvastatin, have many side effects. Recently, several unique marine compounds have been isolated that possess a variety of bioactivities. In a previous study, we found a synthetic precursor of the marine compound (austrasulfone), which is dihydroaustrasulfone alcohol (WA-25), has anti-atherosclerotic effects in vivo. However, the detailed mechanisms remain unclear. Therefore, to clarify the mechanisms through which WA-25 exerts anti-atherosclerotic activity, we used RAW 264.7 macrophages as an in vitro model to evaluate the effects of WA-25. In lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, WA-25 significantly inhibited expression of the pro-inflammatory proteins, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In contrast, simvastatin increased the COX-2 expression compared to WA-25. In addition, WA-25 impedes foam cell formation and up-regulated the lysosomal and cyclic adenosine monophosphate (cAMP) signaling pathway. We also observed that transforming growth factor β1 (TGF-β1) was up-regulated by WA-25 and simvastatin in LPS-induced RAW 264.7 cells, and the promising anti-atherosclerosis effects of WA-25 were disrupted by blockade of TGF-β1 signaling. Besides, WA-25 might act through increasing lipolysis than through alteration of lipid export. Taken together, these data demonstrate that WA-25 may have potential as an anti-atherosclerotic drug with anti-inflammatory effects.

Collaboration


Dive into the Han-Chun Hung's collaboration.

Top Co-Authors

Avatar

Zhi-Hong Wen

National Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Chien-Wei Feng

National Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shi-Ying Huang

National Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Chun-Hong Chen

National Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Chun-Sung Sung

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Nan-Fu Chen

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jyh-Horng Sheu

National Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Ping-Jyun Sung

National Dong Hwa University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge