Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Han-Don Um is active.

Publication


Featured researches published by Han-Don Um.


Optics Express | 2010

A strong antireflective solar cell prepared by tapering silicon nanowires

Jin-Young Jung; Zhongyi Guo; Sang-Won Jee; Han-Don Um; Kwang-Tae Park; Jung-Ho Lee

Vertically aligned silicon nanowires (SiNWs) were cost-effectively formed on a four-inch silicon wafer using a simple room temperature approach, i.e., metal-assisted electroless etching. Tapering the NWs by post-KOH dipping achieved separation of each NW from the bunched NW, resulting in a strong enhancement of broadband optical absorption. As electroless etching time increases, the optical crossover feature was observed in the tradeoff between enhanced light trapping (by graded-refractive index during initial tapering) and deteriorated reflectance (by decreasing the areal density of NWs during later tapering). Compared to the bunched SiNWs, tapered NW solar cells demonstrated superior photovoltaic characteristics, such as a short circuit current of 17.67 mA/cm² and a cell conversion efficiency of ~6.56% under 1.5 AM illumination.


Nanotechnology | 2010

A waferscale Si wire solar cell using radial and bulk p-n junctions.

Jin-Young Jung; Zhongyi Guo; Sang-Won Jee; Han-Don Um; Kwang-Tae Park; Moon Seop Hyun; Jun Mo Yang; Jung-Ho Lee

Silicon nanowires (NWs) and microwires (MWs) are cost-effectively integrated on a 4-inch wafer using metal-assisted electroless etching for solar cell applications. MWs are periodically positioned using low-level optical patterning in between a dense array of NWs. A spin-on-doping technique is found to be effective for the formation of heavily doped, thin n-type shells of MWs in which the radial doping profile is easily delineated by low voltage scanning electron microscopy. Controlled tapering of the NWs results in additional optical enhancement via optimization of the tradeoff between increased light trapping (by a graded-refractive-index) and increased reflectance (by decreasing areal density of NWs). Compared to single NW (or MW) arrayed cells, the co-integrated solar cells demonstrate improved photovoltaic characteristics, i.e. a short circuit current of 20.59 mA cm(-2) and a cell conversion efficiency of ∼ 7.19% at AM 1.5G illumination.


Applied Physics Letters | 2011

Highly selective spectral response with enhanced responsivity of n-ZnO/p-Si radial heterojunction nanowire photodiodes

Han-Don Um; S. A. Moiz; Kwang-Tae Park; Jin-Young Jung; Sang-Won Jee; Cheol Hyoun Ahn; Dong Chan Kim; Hyung Koun Cho; Dong-Wook Kim; Jung-Ho Lee

A radial heterojunction nanowire diode (RND) array consisting of a ZnO (shell)/Si (core) structure was fabricated using conformal coating of a n-type ZnO layer that surrounded a p-type Si nanowire. In both ultraviolet (UV) and visible ranges, the photoresponsivity of the RND was larger than that of a planar thin film diode (PD) owing to the efficient carrier collection with improved light absorption. Compared to a PD, in the forward bias, a 6 μm long RND resulted in a ∼2.7 times enhancement of the UV responsivity at λ=365 nm, which could be explained based on the oxygen-related hole-trap mechanism. Under a reverse bias, UV-blind visible detection was observed while the UV response was suppressed.


ACS Applied Materials & Interfaces | 2013

Highly Electrocatalytic Cu2ZnSn(S1–xSex)4 Counter Electrodes for Quantum-Dot-Sensitized Solar Cells

Yuebin Cao; Yanjun Xiao; Jin-Young Jung; Han-Don Um; Sang-Won Jee; Hye Mi Choi; Jin Ho Bang; Jung-Ho Lee

Traditional Pt counter electrode in quantum-dot-sensitized solar cells suffers from a low electrocatalytic activity and instability due to irreversible surface adsorption of sulfur species incurred while regenerating polysulfide (S(n)(2-)/S(2-)) electrolytes. To overcome such constraints, chemically synthesized Cu(2)ZnSn(S(1-x)Se(x))(4) nanocrystals were evaluated as an alternative to Pt. The resulting chalcogenides exhibited remarkable electrocatalytic activities for reduction of polysulfide (S(n)(2-)) to sulfide (S(2-)), which were dictated by the ratios of S/Se. In this study, a quantum dot sensitized solar cell constructed with Cu(2)ZnSn(S(0.5)Se(0.5))(4) as a counter electrode showed the highest energy conversion efficiency of 3.01%, which was even higher than that using Pt (1.24%). The compositional variations in between Cu(2)ZnSnS(4) (x = 0) and Cu(2)ZnSnSe(4) (x = 1) revealed that the solar cell performances were closely related to a difference in electrocatalytic activities for polysulfide reduction governed by the S/Se ratios.


Scientific Reports | 2013

Lossless hybridization between photovoltaic and thermoelectric devices

Kwang-Tae Park; Sun-Mi Shin; Abdullah S. Tazebay; Han-Don Um; Jin-Young Jung; Sang-Won Jee; Min-Wook Oh; Su-Dong Park; Bongyoung Yoo; Choongho Yu; Jung-Ho Lee

The optimal hybridization of photovoltaic (PV) and thermoelectric (TE) devices has long been considered ideal for the efficient harnessing solar energy. Our hybrid approach uses full spectrum solar energy via lossless coupling between PV and TE devices while collecting waste energy from thermalization and transmission losses from PV devices. Achieving lossless coupling makes the power output from the hybrid device equal to the sum of the maximum power outputs produced separately from individual PV and TE devices. TE devices need to have low internal resistances enough to convey photo-generated currents without sacrificing the PV fill factor. Concomitantly, a large number of p-n legs are preferred to drive a high Seebeck voltage in TE. Our simple method of attaching a TE device to a PV device has greatly improved the conversion efficiency and power output of the PV device (~30% at a 15°C temperature gradient across a TE device).


Optics Express | 2011

Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics.

Kwang-Tae Park; Zhongyi Guo; Han-Don Um; Jin-Young Jung; Jun Mo Yang; Sung Kyu Lim; Young Su Kim; Jung-Ho Lee

A combined wire structure, made up of longer periodic Si microwires and short nanoneedles, was prepared to enhance light absorption using one-step plasma etching via lithographical patterning. The combined wire array exhibited light absorption of up to ~97.6% from 300 to 1100 nm without an anti-reflection coating. These combined wire arrays on a Si substrate were embedded into a transparent polymer. A large-scale wire-embedded soft film was then obtained by peeling the polymer-embedded wire portion from the substrate. Optically attractive features were present in these soft films, making them suitable for use in flexible silicon solar cell applications.


Nano Letters | 2016

Dopant-Free All-Back-Contact Si Nanohole Solar Cells Using MoOx and LiF Films

Han-Don Um; Namwoo Kim; Kangmin Lee; Inchan Hwang; Ji Hoon Seo; Kwanyong Seo

We demonstrate novel all-back-contact Si nanohole solar cells via the simple direct deposition of molybdenum oxide (MoOx) and lithium fluoride (LiF) thin films as dopant-free and selective carrier contacts (SCCs). This approach is in contrast to conventionally used high-temperature thermal doping processes, which require multistep patterning processes to produce diffusion masks. Both MoOx and LiF thin films are inserted between the Si absorber and Al electrodes interdigitatedly at the rear cell surfaces, facilitating effective carrier collection at the MoOx/Si interface and suppressed recombination at the Si and LiF/Al electrode interface. With optimized MoOx and LiF film thickness as well as the all-back-contact design, our 1 cm(2) Si nanohole solar cells exhibit a power conversion efficiency of up to 15.4%, with an open-circuit voltage of 561 mV and a fill factor of 74.6%. In particular, because of the significant reduction in Auger/surface recombination as well as the excellent Si-nanohole light absorption, our solar cells exhibit an external quantum efficiency of 83.4% for short-wavelength light (∼400 nm), resulting in a dramatic improvement (54.6%) in the short-circuit current density (36.8 mA/cm(2)) compared to that of a planar cell (23.8 mA/cm(2)). Hence, our all-back-contact design using MoOx and LiF films formed by a simple deposition process presents a unique opportunity to develop highly efficient and low-cost nanostructured Si solar cells.


Nanotechnology | 2012

A stamped PEDOT:PSS-silicon nanowire hybrid solar cell.

S. A. Moiz; Ahmed M. Nahhas; Han-Don Um; Sang-Won Jee; Hyung Koun Cho; Sang-Woo Kim; Jung-Ho Lee

A novel stamped hybrid solar cell was proposed using the stamping transfer technique by stamping an active PEDOT:PSS thin layer onto the top of silicon nanowires (SiNWs). Compared to a bulk-type counterpart that fully embeds SiNWs inside PEDOT:PSS, an increase in the photovoltaic efficiency was observed by a factor of ∼4.6, along with improvements in both electrical and optical responses for the stamped hybrid cell. Such improvements for hybrid cells was due to the formation of well-connected and linearly aligned active PEDOT:PSS channels at the top ends of the nanowires after the stamping process. These stamped channels facilitated not only to improve the charge transport, light absorption, but also to decrease the free carriers as well as exciton recombination losses for stamped hybrid solar cells.


Scientific Reports | 2015

Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications.

Han-Don Um; Namwoo Kim; Kangmin Lee; Inchan Hwang; Ji Hoon Seo; Young Jun Yu; Peter Duane; Munib Wober; Kwanyong Seo

A systematic study was conducted into the use of metal-assisted chemical etching (MacEtch) to fabricate vertical Si microwire arrays, with several models being studied for the efficient redox reaction of reactants with silicon through a metal catalyst by varying such parameters as the thickness and morphology of the metal film. By optimizing the MacEtch conditions, high-quality vertical Si microwires were successfully fabricated with lengths of up to 23.2 μm, which, when applied in a solar cell, achieved a conversion efficiency of up to 13.0%. These solar cells also exhibited an open-circuit voltage of 547.7 mV, a short-circuit current density of 33.2 mA/cm2, and a fill factor of 71.3% by virtue of the enhanced light absorption and effective carrier collection provided by the Si microwires. The use of MacEtch to fabricate high-quality Si microwires therefore presents a unique opportunity to develop cost-effective and highly efficient solar cells.


ACS Applied Materials & Interfaces | 2016

18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode

Namwoo Kim; Han-Don Um; Inwoo Choi; Ka-Hyun Kim; Kwanyong Seo

We optimize the thickness of a transparent conducting oxide (TCO) layer, and apply a microscale mesh-pattern metal electrode for high-efficiency a-Si/c-Si heterojunction solar cells. A solar cell equipped with the proposed microgrid metal electrode demonstrates a high short-circuit current density (JSC) of 40.1 mA/cm(2), and achieves a high efficiency of 18.4% with an open-circuit voltage (VOC) of 618 mV and a fill factor (FF) of 74.1% as result of the shortened carrier path length and the decreased electrode area of the microgrid metal electrode. Furthermore, by optimizing the process sequence for electrode formation, we are able to effectively restore the reduction in VOC that occurs during the microgrid metal electrode formation process. This work is expected to become a fundamental study that can effectively improve current loss in a-Si/c-Si heterojunction solar cells through the optimization of transparent and metal electrodes.

Collaboration


Dive into the Han-Don Um's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhongyi Guo

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge