Han Fei Ding
Georgia Regents University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Han Fei Ding.
Molecular and Cellular Biology | 1997
Han Fei Ding; Michael Bustin; Ulla Hansen
Histone H1 promotes the generation of a condensed, transcriptionally inactive, higher-order chromatin structure. Consequently, histone H1 activity must be antagonized in order to convert chromatin to a transcriptionally competent, more extended structure. Using simian virus 40 minichromosomes as a model system, we now demonstrate that the nonhistone chromosomal protein HMG-14, which is known to preferentially associate with active chromatin, completely alleviates histone H1-mediated inhibition of transcription by RNA polymerase II. HMG-14 also partially disrupts histone H1-dependent compaction of chromatin. Both the transcriptional enhancement and chromatin-unfolding activities of HMG-14 are mediated through its acidic, C-terminal region. Strikingly, transcriptional and structural activities of HMG-14 are maintained upon replacement of the C-terminal fragment by acidic regions from either GAL4 or HMG-2. These data support the model that the acidic C terminus of HMG-14 is involved in unfolding higher-order chromatin structure to facilitate transcriptional activation of mammalian genes.
Cell Metabolism | 2013
Jane Ding; Tai Li; Xiangwei Wang; Erhu Zhao; Jeong Hyeon Choi; Liqun Yang; Yunhong Zha; Zheng Dong; Shuang Huang; John M. Asara; Hongjuan Cui; Han Fei Ding
Increased activation of the serine-glycine biosynthetic pathway is an integral part of cancer metabolism that drives macromolecule synthesis needed for cell proliferation. Whether this pathway is under epigenetic control is unknown. Here we show that the histone H3 lysine 9 (H3K9) methyltransferase G9A is required for maintaining the pathway enzyme genes in an active state marked by H3K9 monomethylation and for the transcriptional activation of this pathway in response to serine deprivation. G9A inactivation depletes serine and its downstream metabolites, triggering cell death with autophagy in cancer cell lines of different tissue origins. Higher G9A expression, which is observed in various cancers and is associated with greater mortality in cancer patients, increases serine production and enhances the proliferation and tumorigenicity of cancer cells. These findings identify a G9A-dependent epigenetic program in the control of cancer metabolism, providing a rationale for G9A inhibition as a therapeutic strategy for cancer.
Epigenetics | 2012
Lirong Pei; Jeong Hyeon Choi; Jimei Liu; Eun Joon Lee; Brian A. McCarthy; James Wilson; Ethan Speir; Farrukh Awan; Hongseok Tae; Gerald Arthur; Jennifer L. Schnabel; Kristen H. Taylor; Xinguo Wang; Dong Xu; Han Fei Ding; David H. Munn; Charles W. Caldwell; Huidong Shi
We conducted a genome-wide DNA methylation analysis in CD19+ B-cells from chronic lymphocytic leukemia (CLL) patients and normal control samples using reduced representation bisulfite sequencing (RRBS). The methylation status of 1.8–2.3 million CpGs in the CLL genome was determined; about 45% of these CpGs were located in more than 23,000 CpG islands (CGIs). While global CpG methylation was similar between CLL and normal B-cells, 1764 gene promoters were identified as being differentially methylated in at least one CLL sample when compared with normal B-cell samples. Nineteen percent of the differentially methylated genes were involved in transcriptional regulation. Aberrant hypermethylation was found in all HOX gene clusters and a significant number of WNT signaling pathway genes. Hypomethylation occurred more frequently in the gene body including introns, exons, and 3′-UTRs in CLL. The NFATc1 P2 promoter and first intron was found to be hypomethylated and correlated with upregulation of both NFATc1 RNA and protein expression levels in CLL suggesting that an epigenetic mechanism is involved in the constitutive activation of NFAT activity in CLL cells. This comprehensive DNA methylation analysis will further our understanding of the epigenetic contribution to cellular dysfunction in CLL.
American Journal of Pathology | 2009
Goleeta Alam; Hongjuan Cui; Huilin Shi; Liqun Yang; Jane Ding; Ling Mao; William A. Maltese; Han Fei Ding
Amplification of the oncogene MYCN is a tumorigenic event in the development of a subset of neuroblastomas that commonly consist of undifferentiated or poorly differentiated neuroblasts with unfavorable clinical outcome. The cellular origin of these neuroblasts is unknown. Additionally, the cellular functions and target cells of MYCN in neuroblastoma development remain undefined. Here we examine the cell types that drive neuroblastoma development in TH-MYCN transgenic mice, an animal model of the human disease. Neuroblastoma development in these mice begins with hyperplastic lesions in early postnatal sympathetic ganglia. We show that both hyperplasia and primary tumors are composed predominantly of highly proliferative Phox2B(+) neuronal progenitors. MYCN induces the expansion of these progenitors by both promoting their proliferation and preventing their differentiation. We further identify a minor population of undifferentiated nestin(+) cells in both hyperplastic lesions and primary tumors that may serve as precursors of Phox2B(+) neuronal progenitors. These findings establish the identity of neuroblasts that characterize the tumor phenotype and suggest a cellular pathway by which MYCN can promote neuroblastoma development.
Science Signaling | 2013
Sungguan Hong; Hyangsoon Noh; Haoming Chen; Ravi Padia; Zhixing K. Pan; Shi Bing Su; Qing Jing; Han Fei Ding; Shuang Huang
An early step in microRNA processing depends on signaling downstream of the p38 mitogen-activated protein kinase. Promoting MicroRNA Production MicroRNAs (miRNAs) are small noncoding RNAs that target specific mRNAs for degradation or block their translation, thus leading to knockdown of given gene products. Posttranscriptional generation of miRNAs requires the nuclear processing of primary miRNAs (pri-miRNAs) by components of the Drosha-containing complex followed by the cytosolic processing of the resulting precursor miRNAs (pre-miRNAs) by the Dicer complex to generate mature miRNAs. Hong et al. found that inhibition of the mitogen-activated protein kinase (MAPK) p38 and its effector kinase MK2 blocked the processing of a subset of pri-miRNAs. In the cytosol, MK2 phosphorylated the Drosha complex component p68, which was required for its translocation to the nucleus for pri-miRNA processing. Inhibition of p38 signaling in cells decreased the production of miR-145, which targets the mRNA encoding c-Myc, resulting in increased c-Myc abundance and enhanced proliferation. Together, these data suggest that p38 MAPK signaling is required for selected miRNA biogenesis by promoting the nuclear localization of p68. The importance of microRNAs (miRNAs) in biological and disease processes necessitates a better understanding of the mechanisms that regulate miRNA abundance. We showed that the activities of the mitogen-activated protein kinase (MAPK) p38 and its downstream effector kinase MAPK-activated protein kinase 2 (MK2) were necessary for the efficient processing of a subset of primary miRNAs (pri-miRNAs). Through yeast two-hybrid screening, we identified p68 (also known as DDX5), a key component of the Drosha complex that processes pri-miRNAs, as an MK2-interacting protein, and we found that MK2 phosphorylated p68 at Ser197 in cells. In wild-type mouse embryonic fibroblasts (MEFs) treated with a p38 inhibitor or in MK2-deficient (MK2−/−) MEFs, expression of a phosphomimetic mutant p68 fully restored pri-miRNA processing, suggesting that MK2-mediated phosphorylation of p68 was essential for this process. We found that, whereas p68 was present in the nuclei of wild-type MEFs, it was found mostly in the cytoplasm of MK2−/− MEFs. Nuclear localization of p68 depended on MK2-mediated phosphorylation of Ser197. In addition, inhibition of p38 MAPK promoted the growth of wild-type MEFs and breast cancer MCF7 cells by enhancing the abundance of c-Myc through suppression of the biogenesis of the miRNA miR-145, which targets c-Myc. Because pri-miRNA processing occurs in the nucleus, our findings suggest that the p38 MAPK–MK2 signaling pathway promotes miRNA biogenesis by facilitating the nuclear localization of p68.
Neoplasia | 2014
Sungguan Hong; Hyangsoon Noh; Yong Teng; Jing Shao; Hina Rehmani; Han Fei Ding; Zheng Dong; Shi Bing Su; Huidong Shi; Jaejik Kim; Shuang Huang
MicroRNAs have added a new dimension to our understanding of tumorigenesis and associated processes like epithelial-to-mesenchymal transition (EMT). Here, we show that miR-375 is elevated in epithelial-like breast cancer cells, and ectopic miR-375 expression suppresses EMT in mesenchymal-like breast cancer cells. We identified short stature homeobox 2 (SHOX2) as a miR-375 target, and miR-375-mediated suppression in EMT was reversed by forced SHOX2 expression. Ectopic SHOX2 expression can induce EMT in epithelial-like breast cancer cells, whereas SHOX2 knockdown diminishes EMT traits in mesenchymal-like breast cancer cells, demonstrating SHOX2 as an EMT inducer. We show that SHOX2 acts as a transcription factor to upregulate transforming growth factor β receptor I (TβR-I) expression, and TβR-I inhibitor LY364947 abolishes EMT elicited by ectopic SHOX2 expression, suggesting that transforming growth factor β signaling is essential for SHOX2-induced EMT. Manipulating SHOX2 abundance in breast cancer cells impact in vitro invasion and in vivo dissemination. Analysis of breast tumor microarray database revealed that high SHOX2 expression significantly correlates with poor patient survival. Our study supports a critical role of SHOX2 in breast tumorigenicity.
Journal of Biological Chemistry | 2008
Zhe Wang; Baochun Zhang; Liqun Yang; Jane Ding; Han Fei Ding
Normal development of the immune system requires regulated processing of NF-κB2 p100 to p52, which activates NF-κB2 signaling. Constitutive production of p52 has been suggested as a major mechanism underlying lymphomagenesis induced by NF-κB2 mutations, which occur recurrently in a variety of human lymphoid malignancies. To test the hypothesis, we generated transgenic mice with targeted expression of p52 in lymphocytes. In contrast to their counterparts expressing the tumor-derived NF-κB2 mutant p80HT, which develop predominantly B cell tumors, p52 transgenic mice are not prone to lymphomagenesis. However, they are predisposed to inflammatory autoimmune disease characterized by multiorgan infiltration of activated lymphocytes, high levels of autoantibodies in the serum, and immune complex glomerulonephritis. p52, but not p80HT, represses Bim expression, leading to defects in apoptotic processes critical for elimination of autoreactive lymphocytes and control of immune response. These findings reveal distinct signaling pathways for actions of NF-κB2 mutants and p52 and suggest a causal role for sustained NF-κB2 activation in the pathogenesis of autoimmunity.
Cancer Research | 2011
Ling Mao; Jane Ding; Yunhong Zha; Liqun Yang; Brian A. McCarthy; William King; Hongjuan Cui; Han Fei Ding
Differentiation status in neuroblastoma strongly affects clinical outcomes and inducing differentiation is a treatment strategy in this disease. However, the molecular mechanisms that control neuroblastoma differentiation are not well understood. Here, we show that high-level HOXC9 expression is associated with neuroblastoma differentiation and is prognostic for better survival in neuroblastoma patients. HOXC9 induces growth arrest and neuronal differentiation in neuroblastoma cells by directly targeting both cell-cycle-promoting and neuronal differentiation genes. HOXC9 expression is upregulated by retinoic acid (RA), and knockdown of HOXC9 expression confers resistance to RA-induced growth arrest and differentiation. Moreover, HOXC9 expression is epigenetically silenced in RA-resistant neuroblastoma cells, and forced HOXC9 expression is sufficient to inhibit their proliferation and tumorigenecity. These findings identified HOXC9 as a key regulator of neuroblastoma differentiation and suggested a therapeutic strategy for RA-resistant neuroblastomas through epigenetic activation of HOXC9 expression.
Oncogene | 2013
Qingwei Hu; Yi-Yu Lu; Hyangsoon Noh; Sungguan Hong; Zheng Dong; Han Fei Ding; Shi-Bing Su; Shuang Huang
Sustained urokinase-type plasminogen activator (uPA) expression is detected in aggressive breast tumors. Although uPA can be transiently upregulated by diverse extracellular stimuli, sustained, but not transiently upregulated uPA expression contributes to breast cancer invasion/metastasis. Unfortunately, how sustained uPA expression is achieved in invasive/metastatic breast cancer cells is unknown. Here, we show that sustained and transiently upregulated uPA expression are regulated by distinct mechanisms. Using a collection of transcription factor-targeted small-interfering RNAs, we discovered that interleukin enhancer-binding factor 3 (ILF3) is required for sustained uPA expression. Two discrete mechanisms mediate ILF3 action. The first is that ILF3 activates uPA transcription by binding to the CTGTT sequence in the nucleotides −1004∼−1000 of the uPA promoter; the second is that ILF3 inhibits the processing of uPA mRNA-targeting primary microRNAs (pri-miRNAs). Knockdown of ILF3 led to significant reduction in in vitro cell growth/migration/invasion and in vivo breast tumor development. Importantly, immunohistochemistry (IHC) showed that nuclear ILF3, but not cytoplasmic ILF3 staining correlates with elevated uPA level and higher grades of human breast tumor specimens. Nuclear localization of ILF3 highlights the role of ILF3 in sustained uPA expression as a transcription activator and pri-miRNA processing blocker. In conclusion, this study shows that ILF3 promotes breast tumorigenicity by regulating sustained uPA expression.
Genes & Cancer | 2011
Yong Li; Zijing Guo; Huijun Chen; Zheng Dong; Zhixing K. Pan; Han Fei Ding; Shi Bing Su; Shuang Huang
HOXC8 expression is upregulated in diverse cancer types, and a high level of HOXC8 is often associated with the aggressive/metastatic phenotypes. We previously reported that the presence of HOXC8 is essential for breast cancer cell migration and metastasis. However, the underlying molecular mechanism of HOXC8 regulation of cell migration is unclear. Here, we demonstrate that the presence of HOXC8 is required for cadherin 11 (CDH11) expression in breast cancer cells and that HOXC8 regulation of cell migration is mediated by CDH11. To understand the role of HOXC8-CDH11 axis in cell migration, we show that depleting either HOXC8 or CDH11 diminishes the formation of actin-based membrane ruffles, an event essential for cell migration. The loss of membrane ruffles in HOXC8- or CDH11-knockdown cells is apparently caused by reduced Rac activity because ectopically expressing active Rac1 restores cytoskeleton reorganization. CDH11 physically interacts with Trio, a Rac GEF. We show that Trio is responsible for the majority of endogenous Rac activity in migratory breast cancer cells. Because knockdown of CDH11 prevents the plasma membrane localization of Trio, our study indicates that CDH11 may play a role in recruiting Trio to the plasma membrane where Trio activates Rac, leading to cell migration. This study reveals a novel HOXC8-CDH11-Trio-Rac signaling axis that contributes significantly to breast cancer cell migration.