Han-Oh Park
Pai Chai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Han-Oh Park.
Science | 2008
Assen Roguev; Sourav Bandyopadhyay; Martin Zofall; Ke Zhang; Tamás Fischer; Sean R. Collins; Hongjing Qu; Michael Shales; Han-Oh Park; Jacqueline Hayles; Kwang-Lae Hoe; Dong-Uk Kim; Trey Ideker; Shiv I. S. Grewal; Jonathan S. Weissman; Nevan J. Krogan
An epistasis map (E-MAP) was constructed in the fission yeast, Schizosaccharomyces pombe, by systematically measuring the phenotypes associated with pairs of mutations. This high-density, quantitative genetic interaction map focused on various aspects of chromosome function, including transcription regulation and DNA repair/replication. The E-MAP uncovered a previously unidentified component of the RNA interference (RNAi) machinery (rsh1) and linked the RNAi pathway to several other biological processes. Comparison of the S. pombe E-MAP to an analogous genetic map from the budding yeast revealed that, whereas negative interactions were conserved between genes involved in similar biological processes, positive interactions and overall genetic profiles between pairs of genes coding for physically associated proteins were even more conserved. Hence, conservation occurs at the level of the functional module (protein complex), but the genetic cross talk between modules can differ substantially.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Scott J. Dixon; Yaroslav Fedyshyn; Judice L. Y. Koh; T. S. Keshava Prasad; Charly Chahwan; Gordon Chua; Kiana Toufighi; Anastasija Baryshnikova; Jacqueline Hayles; Kwang-Lae Hoe; Dong-Uk Kim; Han-Oh Park; Chad L. Myers; Akhilesh Pandey; Daniel Durocher; Brenda Andrews; Charles Boone
Synthetic lethal genetic interaction networks define genes that work together to control essential functions and have been studied extensively in Saccharomyces cerevisiae using the synthetic genetic array (SGA) analysis technique (ScSGA). The extent to which synthetic lethal or other genetic interaction networks are conserved between species remains uncertain. To address this question, we compared literature-curated and experimentally derived genetic interaction networks for two distantly related yeasts, Schizosaccharomyces pombe and S. cerevisiae. We find that 23% of interactions in a novel, high-quality S. pombe literature-curated network are conserved in the existing S. cerevisiae network. Next, we developed a method, called S. pombe SGA analysis (SpSGA), enabling rapid, high-throughput isolation of genetic interactions in this species. Direct comparison by SpSGA and ScSGA of ∼220 genes involved in DNA replication, the DNA damage response, chromatin remodeling, intracellular transport, and other processes revealed that ∼29% of genetic interactions are common to both species, with the remainder exhibiting unique, species-specific patterns of genetic connectivity. We define a conserved yeast network (CYN) composed of 106 genes and 144 interactions and suggest that this network may help understand the shared biology of diverse eukaryotic species.
Cell | 2010
Elizabeth H. Bayne; Sharon A. White; Alexander Kagansky; Dominika A. Bijos; Luis Sanchez-Pulido; Kwang-Lae Hoe; Dong-Uk Kim; Han-Oh Park; Chris P. Ponting; Juri Rappsilber; Robin C. Allshire
Summary In fission yeast, RNAi directs heterochromatin formation at centromeres, telomeres, and the mating type locus. Noncoding RNAs transcribed from repeat elements generate siRNAs that are incorporated into the Argonaute-containing RITS complex and direct it to nascent homologous transcripts. This leads to recruitment of the CLRC complex, including the histone methyltransferase Clr4, promoting H3K9 methylation and heterochromatin formation. A key question is what mediates the recruitment of Clr4/CLRC to transcript-bound RITS. We have identified a LIM domain protein, Stc1, that is required for centromeric heterochromatin integrity. Our analyses show that Stc1 is specifically required to establish H3K9 methylation via RNAi, and interacts both with the RNAi effector Ago1, and with the chromatin-modifying CLRC complex. Moreover, tethering Stc1 to a euchromatic locus is sufficient to induce silencing and heterochromatin formation independently of RNAi. We conclude that Stc1 associates with RITS on centromeric transcripts and recruits CLRC, thereby coupling RNAi to chromatin modification.
Journal of Microbiology | 2010
Ji-Hee Kang; Sung-Il Yun; Han-Oh Park
We investigated the weight-gain suppressive effect of Lactobacillus gasseri BNR17 isolated from human breast milk. Rats were fed a high-carbohydrate diet and administered BNR17 (BNR17 group) twice daily for twelve weeks. Changes were observed in body weight and white adipose tissue mass. The percent increase in body weight (P=0.0331) and fat pad mass (P<0.01) was significantly lower in the BNR17 group, and the FER was moderately lower (P=0.0769). These data suggest that BNR17 can prevent diet-induced overweight and may become an alternative method for treating weight problems and obesity.
PLOS ONE | 2013
Ji-Hee Kang; Sung-Il Yun; Mi-Hee Park; Jun-Hong Park; So-Young Jeong; Han-Oh Park
Previously, we reported that Lactobacillus gasseri BNR17 (BNR17), a probiotic strain isolated from human breast milk, inhibited increases in body weight and adipocyte tissue weight in high-sucrose diet-fed Sprague-Dawley (SD) rats and reduced glucose levels in type 2 diabetes mice. In the current study, we conducted further experiments to extend these observations and elucidate the mechanism involved. C57BL/6J mice received a normal diet, high-sucrose diet or high-sucrose diet containing L. gasseri BNR17 (109 or 1010 CFU) for 10 weeks. The administration of L. gasseri BNR17 significantly reduced the body weight and white adipose tissue weight regardless of the dose administered. In BNR17-fed groups, mRNA levels of fatty acid oxidation-related genes (ACO, CPT1, PPARα, PPARδ) were significantly higher and those of fatty acid synthesis-related genes (SREBP-1c, ACC) were lower compared to the high-sucrose-diet group. The expression of GLUT4, main glucose transporter-4, was elevated in BNR17-fed groups. L. gasseri BNR17 also reduced the levels of leptin and insulin in serum. These results suggest that the anti-obesity actions of L. gasseri BNR17 can be attributed to elevated expression of fatty acid oxidation-related genes and reduced levels of leptin. Additionally, data suggested the anti-diabetes activity of L. gasseri BNR17 may be to due elevated GLUT4 and reduced insulin levels.
Open Biology | 2013
Jacqueline Hayles; Valerie Wood; Linda Jeffery; Kwang-Lae Hoe; Dong-Uk Kim; Han-Oh Park; Silvia Salas-Pino; Christian Heichinger; Paul Nurse
To identify near complete sets of genes required for the cell cycle and cell shape, we have visually screened a genome-wide gene deletion library of 4843 fission yeast deletion mutants (95.7% of total protein encoding genes) for their effects on these processes. A total of 513 genes have been identified as being required for cell cycle progression, 276 of which have not been previously described as cell cycle genes. Deletions of a further 333 genes lead to specific alterations in cell shape and another 524 genes result in generally misshapen cells. Here, we provide the first eukaryotic resource of gene deletions, which describes a near genome-wide set of genes required for the cell cycle and cell shape.
PLOS ONE | 2008
Alice Zuin; Natalia Gabrielli; Isabel A. Calvo; Sarela García-Santamarina; Kwang-Lae Hoe; Dong Uk Kim; Han-Oh Park; Jacqueline Hayles; José Ayté; Elena Hidalgo
Background Oxidative stress is a probable cause of aging and associated diseases. Reactive oxygen species (ROS) originate mainly from endogenous sources, namely the mitochondria. Methodology/Principal Findings We analyzed the effect of aerobic metabolism on oxidative damage in Schizosaccharomyces pombe by global mapping of those genes that are required for growth on both respiratory-proficient media and hydrogen-peroxide-containing fermentable media. Out of a collection of approximately 2700 haploid yeast deletion mutants, 51 were sensitive to both conditions and 19 of these were related to mitochondrial function. Twelve deletion mutants lacked components of the electron transport chain. The growth defects of these mutants can be alleviated by the addition of antioxidants, which points to intrinsic oxidative stress as the origin of the phenotypes observed. These respiration-deficient mutants display elevated steady-state levels of ROS, probably due to enhanced electron leakage from their defective transport chains, which compromises the viability of chronologically-aged cells. Conclusion/Significance Individual mitochondrial dysfunctions have often been described as the cause of diseases or aging, and our global characterization emphasizes the primacy of oxidative stress in the etiology of such processes.
Toxicological Sciences | 2008
Patrick Joseph Kennedy; Ajay Amar Vashisht; Kwang-Lae Hoe; Dong-Uk Kim; Han-Oh Park; Jacqueline Hayles; Paul Russell
Cadmium is a worldwide environmental toxicant responsible for a range of human diseases including cancer. Cellular injury from cadmium is minimized by stress-responsive detoxification mechanisms. We explored the genetic requirements for cadmium tolerance by individually screening mutants from the fission yeast (Schizosaccharomyces pombe) haploid deletion collection for inhibited growth on agar growth media containing cadmium. Cadmium-sensitive mutants were further tested for sensitivity to oxidative stress (hydrogen peroxide) and osmotic stress (potassium chloride). Of 2649 mutants screened, 237 were sensitive to cadmium, of which 168 were cadmium specific. Most were previously unknown to be involved in cadmium tolerance. The 237 genes represent a number of pathways including sulfate assimilation, phytochelatin synthesis and transport, ubiquinone (Coenzyme Q10) biosynthesis, stress signaling, cell wall biosynthesis and cell morphology, gene expression and chromatin remodeling, vacuole function, and intracellular transport of macromolecules. The ubiquinone biosynthesis mutants are acutely sensitive to cadmium but only mildly sensitive to hydrogen peroxide, indicating that Coenzyme Q10 plays a larger role in cadmium tolerance than just as an antioxidant. These and several other mutants turn yellow when exposed to cadmium, suggesting cadmium sulfide accumulation. This phenotype can potentially be used as a biomarker for cadmium. There is remarkably little overlap with a comparable screen of the Saccharomyces cerevisiae haploid deletion collection, indicating that the two distantly related yeasts utilize significantly different strategies for coping with cadmium stress. These strategies and their relation to cadmium detoxification in humans are discussed.
PLOS ONE | 2012
Ju-Hee Lee; Ji-Hyun Yeon; Han-Na Kim; Whijae Roh; Jeiwook Chae; Han-Oh Park; Dong-Myung Kim
Drug-induced haploinsufficiency (DIH) in yeast has been considered a valuable tool for drug target identification. A plant metabolite, plumbagin, has potent anticancer activity via reactive oxygen species (ROS) generation. However, the detailed molecular targets of plumbagin for ROS generation are not understood. Here, using DIH and heterozygous deletion mutants of the fission yeast Schizosaccharomyces pombe, we identified 1, 4-phopshatidylinositol 5-kinase (PI5K) its3 as a new molecular target of plumbagin for ROS generation. Plumbagin showed potent anti-proliferative activity (GI50; 10 µM) and induced cell elongation and septum formation in wild-type S. pombe. Furthermore, plumbagin dramatically increased the intracellular ROS level, and pretreatment with the ROS scavenger, N-acetyl cysteine (NAC), protected against growth inhibition by plumbagin, suggesting that ROS play a crucial role in the anti-proliferative activity in S. pombe. Interestingly, significant DIH was observed in an its3-deleted heterozygous mutant, in which ROS generation by plumbagin was higher than that in wild-type cells, implying that its3 contributes to ROS generation by plumbagin in this yeast. In MCF7 human breast cancer cells, plumbagin significantly decreased the level of a human ortholog, 1, 4-phopshatidylinositol 5-kinase (PI5K)-1B, of yeast its3, and knockdown of PI5K-1B using siPI5K-1B increased the ROS level and decreased cell viability. Taken together, these results clearly show that PI5K-1B plays a crucial role in ROS generation as a new molecular target of plumbagin. Moreover, drug target screening using DIH in S. pombe deletion mutants is a valuable tool for identifying molecular targets of anticancer agents.
Genes & Development | 2010
Jennifer Moss; Helen Tinline-Purvis; Carol Walker; Lisa K. Folkes; Michael R.L. Stratford; Jacqueline Hayles; Kwang-Lae Hoe; Dong-Uk Kim; Han-Oh Park; Stephen E. Kearsey; Oliver Fleck; Christian Holmberg; Olaf Nielsen; Timothy C. Humphrey
Nucleotide synthesis is a universal response to DNA damage, but how this response facilitates DNA repair and cell survival is unclear. Here we establish a role for DNA damage-induced nucleotide synthesis in homologous recombination (HR) repair in fission yeast. Using a genetic screen, we found the Ddb1-Cul4(Cdt)² ubiquitin ligase complex and ribonucleotide reductase (RNR) to be required for HR repair of a DNA double-strand break (DSB). The Ddb1-Cul4(Cdt)² ubiquitin ligase complex is required for degradation of Spd1, an inhibitor of RNR in fission yeast. Accordingly, deleting spd1(+) suppressed the DNA damage sensitivity and the reduced HR efficiency associated with loss of ddb1(+) or cdt2(+). Furthermore, we demonstrate a role for nucleotide synthesis in postsynaptic gap filling of resected ssDNA ends during HR repair. Finally, we define a role for Rad3 (ATR) in nucleotide synthesis and HR through increasing Cdt2 nuclear levels in response to DNA damage. Our findings support a model in which break-induced Rad3 and Ddb1-Cul4(Cdt)² ubiquitin ligase-dependent Spd1 degradation and RNR activation promotes postsynaptic ssDNA gap filling during HR repair.