Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Han Sheng Chiu is active.

Publication


Featured researches published by Han Sheng Chiu.


Nature | 2015

Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis

Minoru Takasato; P. Er; Han Sheng Chiu; Barbara Maier; Gregory J. Baillie; Charles Ferguson; Robert G. Parton; Ernst J. Wolvetang; Matthias S Roost; Susana Lopes; Melissa H. Little

The human kidney contains up to 2 million epithelial nephrons responsible for blood filtration. Regenerating the kidney requires the induction of the more than 20 distinct cell types required for excretion and the regulation of pH, and electrolyte and fluid balance. We have previously described the simultaneous induction of progenitors for both collecting duct and nephrons via the directed differentiation of human pluripotent stem cells. Paradoxically, although both are of intermediate mesoderm in origin, collecting duct and nephrons have distinct temporospatial origins. Here we identify the developmental mechanism regulating the preferential induction of collecting duct versus kidney mesenchyme progenitors. Using this knowledge, we have generated kidney organoids that contain nephrons associated with a collecting duct network surrounded by renal interstitium and endothelial cells. Within these organoids, individual nephrons segment into distal and proximal tubules, early loops of Henle, and glomeruli containing podocytes elaborating foot processes and undergoing vascularization. When transcription profiles of kidney organoids were compared to human fetal tissues, they showed highest congruence with first trimester human kidney. Furthermore, the proximal tubules endocytose dextran and differentially apoptose in response to cisplatin, a nephrotoxicant. Such kidney organoids represent powerful models of the human organ for future applications, including nephrotoxicity screening, disease modelling and as a source of cells for therapy.


Developmental Biology | 2009

Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment.

Kylie Georgas; Bree Rumballe; M. Todd Valerius; Han Sheng Chiu; Rathi D. Thiagarajan; Emmanuelle Lesieur; Bruce J. Aronow; Eric W. Brunskill; Alexander N. Combes; Dave Tang; Darrin Taylor; Sean M. Grimmond; S. Steven Potter; Andrew P. McMahon; Melissa H. Little

While nephron formation is known to be initiated by a mesenchyme-to-epithelial transition of the cap mesenchyme to form a renal vesicle (RV), the subsequent patterning of the nephron and fusion with the ureteric component of the kidney to form a patent contiguous uriniferous tubule has not been fully characterized. Using dual section in situ hybridization (SISH)/immunohistochemistry (IHC) we have revealed distinct distal/proximal patterning of Notch, BMP and Wnt pathway components within the RV stage nephron. Quantitation of mitoses and Cyclin D1 expression indicated that cell proliferation was higher in the distal RV, reflecting the differential developmental programs of the proximal and distal populations. A small number of RV genes were also expressed in the early connecting segment of the nephron. Dual ISH/IHC combined with serial section immunofluorescence and 3D reconstruction revealed that fusion occurs between the late RV and adjacent ureteric tip via a process that involves loss of the intervening ureteric epithelial basement membrane and insertion of cells expressing RV markers into the ureteric tip. Using Six2-eGFPCre x R26R-lacZ mice, we demonstrate that these cells are derived from the cap mesenchyme and not the ureteric epithelium. Hence, both nephron patterning and patency are evident at the late renal vesicle stage.


PLOS ONE | 2011

Identification of anchor genes during kidney development defines ontological relationships, molecular subcompartments and regulatory pathways

Rathi D. Thiagarajan; Kylie Georgas; Bree Rumballe; Emmanuelle Lesieur; Han Sheng Chiu; Darrin Taylor; Dave Tang; Sean M. Grimmond; Melissa H. Little

The development of the mammalian kidney is well conserved from mouse to man. Despite considerable temporal and spatial data on gene expression in mammalian kidney development, primarily in rodent species, there is a paucity of genes whose expression is absolutely specific to a given anatomical compartment and/or developmental stage, defined here as ‘anchor’ genes. We previously generated an atlas of gene expression in the developing mouse kidney using microarray analysis of anatomical compartments collected via laser capture microdissection. Here, this data is further analysed to identify anchor genes via stringent bioinformatic filtering followed by high resolution section in situ hybridisation performed on 200 transcripts selected as specific to one of 11 anatomical compartments within the midgestation mouse kidney. A total of 37 anchor genes were identified across 6 compartments with the early proximal tubule being the compartment richest in anchor genes. Analysis of minimal and evolutionarily conserved promoter regions of this set of 25 anchor genes identified enrichment of transcription factor binding sites for Hnf4a and Hnf1b, RbpJ (Notch signalling), PPARγ:RxRA and COUP-TF family transcription factors. This was reinforced by GO analyses which also identified these anchor genes as targets in processes including epithelial proliferation and proximal tubular function. As well as defining anchor genes, this large scale validation of gene expression identified a further 92 compartment-enriched genes able to subcompartmentalise key processes during murine renal organogenesis spatially or ontologically. This included a cohort of 13 ureteric epithelial genes revealing previously unappreciated compartmentalisation of the collecting duct system and a series of early tubule genes suggesting that segmentation into proximal tubule, loop of Henle and distal tubule does not occur until the onset of glomerular vascularisation. Overall, this study serves to illuminate previously ill-defined stages of patterning and will enable further refinement of the lineage relationships within mammalian kidney development.


Histochemistry and Cell Biology | 2008

Use of dual section mRNA in situ hybridisation/immunohistochemistry to clarify gene expression patterns during the early stages of nephron development in the embryo and in the mature nephron of the adult mouse kidney

Kylie Georgas; Bree Rumballe; Lorine Wilkinson; Han Sheng Chiu; Emmanuelle Lesieur; Thierry Gilbert; Melissa H. Little

The kidney is the most complex organ within the urogenital system. The adult mouse kidney contains in excess of 8,000 mature nephrons, each of which can be subdivided into a renal corpuscle and 14 distinct tubular segments. The histological complexity of this organ can make the clarification of the site of gene expression by in situ hybridisation difficult. We have defined a panel of seven antibodies capable of identifying the six stages of early nephron development, the tubular nephron segments and the components of the renal corpuscle within the embryonic and adult mouse kidney. We have analysed in detail the protein expression of Wt1, Calb1 Aqp1, Aqp2 and Umod using these antibodies. We have then coupled immunohistochemistry with RNA in situ hybridisation in order to precisely identify the expression pattern of different genes, including Wnt4, Umod and Spp1. This technique will be invaluable for examining at high resolution, the structure of both the developing and mature nephron where standard in situ hybridisation and histological techniques are insufficient. The use of this technique will enhance the expression analyses of genes which may be involved in nephron formation and the function of the mature nephron in the mouse.


Nature Protocols | 2016

Generation of kidney organoids from human pluripotent stem cells

Minoru Takasato; P. Er; Han Sheng Chiu; Melissa H. Little

The human kidney develops from four progenitor populations—nephron progenitors, ureteric epithelial progenitors, renal interstitial progenitors and endothelial progenitors—resulting in the formation of maximally 2 million nephrons. Until recently, the reported methods differentiated human pluripotent stem cells (hPSCs) into either nephron progenitor or ureteric epithelial progenitor cells, consequently forming only nephrons or collecting ducts, respectively. Here we detail a protocol that simultaneously induces all four progenitors to generate kidney organoids within which segmented nephrons are connected to collecting ducts and surrounded by renal interstitial cells and an endothelial network. As evidence of functional maturity, proximal tubules within organoids display megalin-mediated and cubilin-mediated endocytosis, and they respond to a nephrotoxicant to undergo apoptosis. This protocol consists of 7 d of monolayer culture for intermediate mesoderm induction, followed by 18 d of 3D culture to facilitate self-organizing renogenic events leading to organoid formation. Personnel experienced in culturing hPSCs are required to conduct this protocol.


Developmental Biology | 2010

Comparative gene expression analysis of genital tubercle development reveals a putative appendicular Wnt7 network for the epidermal differentiation

Han Sheng Chiu; John C. Szucsik; Kylie Georgas; Julia L. Jones; Bree Rumballe; Dave Tang; Sean M. Grimmond; Alfor G. Lewis; Bruce J. Aronow; James L. Lessard; Melissa H. Little

Here we describe the first detailed catalog of gene expression in the developing lower urinary tract (LUT), including epithelial and mesenchymal portions of the developing bladder, urogenital sinus, urethra, and genital tubercle (GT) at E13 and E14. Top compartment-specific genes implicated by the microarray data were validated using whole-mount in situ hybridization (ISH) over the entire LUT. To demonstrate the potential of this resource to implicate developmentally critical features, we focused on gene expression patterns and pathways in the sexually indeterminate, androgen-independent GT. GT expression patterns reinforced the proposed similarities between development of GT, limb, and craniofacial prominences. Comparison of spatial expression patterns predicted a network of Wnt7a-associated GT-enriched epithelial genes, including Gjb2, Dsc3, Krt5, and Sostdc1. Known from other contexts, these genes are associated with normal epidermal differentiation, with disruptions in Dsc3 and Gjb2 showing palmo-plantar keratoderma in the limb. We propose that this gene network contributes to normal foreskin, scrotum, and labial development. As several of these genes are known to be regulated by, or contain cis elements responsive to retinoic acid, estrogen, or androgen, this implicates this pathway in the later androgen-dependent development of the GT.


Developmental Dynamics | 2011

Expression of metanephric nephron‐patterning genes in differentiating mesonephric tubules

Kylie Georgas; Han Sheng Chiu; Emmanuelle Lesieur; Bree Rumballe; Melissa H. Little

The metanephros is the functional organ in adult amniotes while the mesonephros degenerates. However, parallel tubulogenetic events are thought to exist between mesonephros and metanephros. Mesonephric tubules are retained in males and differentiate into efferent ducts of the male reproductive tract. By examining the murine mesonephric expression of markers of distinct stages and regions of metanephric nephrons during tubule formation and patterning, we provide further evidence to support this common morphogenetic mechanism. Renal vesicle, early proximal and distal tubule, loop of Henle, and renal corpuscle genes were expressed by mesonephric tubules. Vip, Slc6a20b, and Slc18a1 were male‐specific. In contrast, mining of the GUDMAP database identified candidate late mesonephros‐specific genes, 10 of which were restricted to the male. Among the male‐specific genes are candidates for regulating ion/fluid balance within the efferent ducts, thereby regulating sperm maturation and genes marking tubule‐associated neurons potentially critical for normal male reproductive tract function. Developmental Dynamics 240:1600–1612, 2011.


Genesis | 2012

Production of a Mouse Line with a Conditional Crim1 Mutant Allele

Han Sheng Chiu; J. Philippe York; Lorine Wilkinson; Pumin Zhang; Melissa H. Little; David J. Pennisi

Crim1 is a developmentally expressed, transmembrane protein essential for normal embryonic development. We generated mice engineered to contain a Crim1 conditional null allele by flanking exons three and four of Crim1 with unidirectional LoxP sites. After crossing Crim1+/FLOX mice with a CMV‐Cre line, a Crim1+/Δflox colony was established after germline transmission of the deleted allele. We then analyzed genomic DNA, mRNA transcripts, and protein expression from Crim1Δflox/Δflox null mice to confirm the nature of the genomic lesion. Crim1Δflox/Δflox mice displayed phenotypes similar to those previously described for a Crim1 gene‐trap mutant, Crim1KST264/KST264, including perinatal lethality, digit syndactyly, eye, and kidney abnormalities, with varying penetrance and severity. The production of a conditional mutant allele represents a valuable resource for the study of the tissue‐specific roles for Crim1, and for understanding the pleimorphic phenotypes associated with Crim1 mutation. genesis 50:711–716, 2012.


Frontiers in Neuroscience | 2012

A Genome-Wide Screen to Identify Transcription Factors Expressed in Pelvic Ganglia of the Lower Urinary Tract

Carrie B. Wiese; Sara Sara Ireland; Nicole Fleming; Jing Yu; M. Todd Valerius; Kylie Georgas; Han Sheng Chiu; Jane Brennan; Jane Armstrong; Melissa H. Little; Andrew P. McMahon; E. Michelle Southard-Smith

Relative positions of neurons within mature murine pelvic ganglia based on expression of neurotransmitters have been described. However the spatial organization of developing innervation in the murine urogenital tract (UGT) and the gene networks that regulate specification and maturation of neurons within the pelvic ganglia of the lower urinary tract (LUT) are unknown. We used whole-mount immunohistochemistry and histochemical stains to localize neural elements in 15.5 days post coitus (dpc) fetal mice. To identify potential regulatory factors expressed in pelvic ganglia, we surveyed expression patterns for known or probable transcription factors (TF) annotated in the mouse genome by screening a whole-mount in situ hybridization library of fetal UGTs. Of the 155 genes detected in pelvic ganglia, 88 encode TFs based on the presence of predicted DNA-binding domains. Neural crest (NC)-derived progenitors within the LUT were labeled by Sox10, a well-known regulator of NC development. Genes identified were categorized based on patterns of restricted expression in pelvic ganglia, pelvic ganglia and urethral epithelium, or pelvic ganglia and urethral mesenchyme. Gene expression patterns and the distribution of Sox10+, Phox2b+, Hu+, and PGP9.5+ cells within developing ganglia suggest previously unrecognized regional segregation of Sox10+ progenitors and differentiating neurons in early development of pelvic ganglia. Reverse transcription-PCR of pelvic ganglia RNA from fetal and post-natal stages demonstrated that multiple TFs maintain post-natal expression, although Pax3 is extinguished before weaning. Our analysis identifies multiple potential regulatory genes including TFs that may participate in segregation of discrete lineages within pelvic ganglia. The genes identified here are attractive candidate disease genes that may now be further investigated for their roles in malformation syndromes or in LUT dysfunction.


Sexual Development | 2011

Expression and functional analysis of Dkk1 during early gonadal development.

Alexander N. Combes; Josephine Bowles; Chun-Wei Feng; Han Sheng Chiu; Poh-Lynn Khoo; Andrew Jackson; Melissa H. Little; Patrick P.L. Tam; Peter Koopman

WNT signalling plays a central role in mammalian sex determination by promoting ovarian development and repressing aspects of testis development in the early gonad. Dickkopf homolog 1 (DKK1) is a WNT signalling antagonist that plays critical roles in multiple developmental systems by modulating WNT activity. Here, we examined the role of DKK1 in mouse sex determination and early gonadal development. Dkk1 mRNA was upregulated sex-specifically during testis differentiation, suggesting that DKK1 could repress WNT signalling in the developing testis. However, we observed overtly normal testis development in Dkk1-null XY gonads, and found no significant upregulation of Axin2 or Sp5 that would indicate increased canonical WNT signalling. Nor did we find significant differences in expression of key markers of testis and ovarian development. We propose that DKK1 may play a protective role that is not unmasked by loss-of-function in the absence of other stressors.

Collaboration


Dive into the Han Sheng Chiu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kylie Georgas

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Bree Rumballe

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Senabouth

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Dave Tang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge