Han-Xi Shen
Nankai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Han-Xi Shen.
Analytica Chimica Acta | 1997
Min Zhu; Xue-Mei Huang; Jie Li; Han-Xi Shen
A novel method was developed for the spectrophotometric determinations of ascorbic acid, norepinephrine, epinephrine, dopamine and levodopa. It is based on interference with peroxidase activity, which caused a decrease of the rate of the coupling reaction of p-chlorophenol with 4-aminoantipyrine. The mechanism of interference was studied in a preliminary way, and optimal experimental conditions for the determinations were established. Analysis of commercial pharmaceutical formulations showed excellent correlation with the nominal values given by the manufacturers and with the results of the official methods for the same samples.
Biosensors and Bioelectronics | 2010
Jun-Hong Guo; De-Ming Kong; Han-Xi Shen
This paper describes the construction of a DNA IMPLICATION logic gate based on triphenylmethane (TPM) dye/G-quadruplex complexes, using Ag+ and cysteine (Cys) as the two inputs, and fluorescence intensity of the TPM dye as the output signal. Free triphenylmethane (TPM) dyes emit inherently low fluorescence signal, the formation of TPM dye/G-quadruplex complexes yielded greatly enhanced fluorescence signals from the dye, and the output signal of the gate was 1. The addition of Cys had no effect on the fluorescence signal, again yielding an output of 1. However, the addition of Ag+ instead of Cys greatly disrupted the G-quadruplex structure, causing a decrease in the fluorescence of the dye, and yielding an output signal of 0. The addition of Cys into the Ag+-quenched fluorescence system led to the release of Ag+ from G-quadruplex-forming DNAs, resulting in the reformation of G-quadruplex structures and the recovery of TMP dye fluorescence, the output signal of 1 was obtained again. Compared with previously published DNA logic gates, the gate operation described here was rapid and reversible, with a reliable, nondestructive readout and excellent digital behavior. In addition, the modulation of TPM dye/G-quadruplex complex fluorescence by Ag+ and Cys could be used to develop a simple, fast, label-free and highly specific homogenous sensing methods for Ag+ and Cys.
Analytical Chemistry | 2009
De-Ming Kong; Yong-E Ma; Jun-Hong Guo; Wei Yang; Han-Xi Shen
G-rich sequences with the potential for quadruplex formation are common in genomic DNA. Considering that the biological functions of G-quadruplexes may well depend on their structures, the development of a sensitive structural probe for distinguishing different types of quadruplexes has received great attention. Crystal violet (CV) is a triphenylmethane dye, which can stack onto the two external G-quartets of a G-quadruplex. The ability of CV to discriminate G-quadruplexes from duplex and single-stranded DNAs has been reported by us. Herein, the ability of CV to discriminate parallel from antiparallel structures of a G-quadruplex was studied. The binding of CV to an antiparallel G-quadruplex can make its fluorescence intensity increase to a high level because of the protection of bound CV from the solvent by quadruplex end loops. The presence of side loops in parallel G-quadruplexes cannot provide bound CV such protection, causing the fluorescence intensity of CV/G-quadruplex mixture to be obviously weaker when the G-quadruplex adopts a parallel structure than that when the G-quadruplex adopts an antiparallel structure. Therefore, CV can be developed as a sensitive fluorescent biosensor for the discrimination of antiparallel G-quadruplexes from parallel G-quadruplexes and for monitoring the structural interconversion of G-quadruplexes. In addition, considering that some G-rich DNA sequences can adopt different G-quadruplex structures under Na(+) or K(+) ion conditions, a novel, cheap and simple K(+) ion detection method was developed. This method displays a high K(+) ion selectivity against Na(+) ion, the change of 200 mM in Na(+) ion concentration only causes a similar fluorescent signal change to 0.3 mM K(+) ion.
Journal of Inorganic Biochemistry | 2008
De-Ming Kong; Jiao Wang; Li-Na Zhu; Ya-Wei Jin; Xiao-Zeng Li; Han-Xi Shen; Huaifeng Mi
Nickel is considered a weak carcinogen. Some researches have shown that bound proteins or synthetic ligands may increase the toxic effect of nickel ions. A systematic study of ligand effects on the interaction between nickel complexes and DNA is necessary. Here, we compared the interactions between DNA and six closely related Schiff base tetraazamacrocyclic oxamido nickel(II) complexes NiL(1-3a,1-3b). The structure of one of the six complexes, NiL(3b) has been characterized by single crystal X-ray analysis. All of the complexes can cleave plasmid DNA under physiological conditions in the presence of H(2)O(2). NiL(3b) shows the highest DNA cleavage activity. It can convert supercoiled DNA to nicked DNA then linear DNA in a sequential manner as the complex concentration or reaction time is increased. The cleavage reaction is a typical pseudo-first-order consecutive reaction with the rate constants of 3.27+/-0.14h(-1) (k(1)) and 0.0966+/-0.0042h(-1) (k(2)), respectively, when a complex concentration of 0.6mM is used. The cleavage mechanism between the complex and plasmid DNA is likely to involve hydroxyl radicals as reactive oxygen species. Circular dichronism (CD), fluorescence spectroscopy and gel electrophoresis indicate that the complexes bind to DNA by partial intercalative and groove binding modes, but these binding interactions are not the dominant factor in determining the DNA cleavage abilities of the complexes.
Chemistry: A European Journal | 2009
De-Ming Kong; Yong-E Ma; Jing Wu; Han-Xi Shen
G-rich nucleic acid sequences with the potential to form G-quadruplex structures are common in biologically important regions. Most of these sequences are present with their complementary strands, so the development of a sensitive biosensor to distinguish G-quadruplex and duplex structures and to determine the competitive ability of quadruplex to duplex structures has received a great deal of attention. In this work, the interactions between two triphenylmethane dyes (malachite green (MG) and crystal violet (CV)) and G-quadruplex, duplex, or single-stranded DNAs were studied by fluorescence spectroscopy and energy-transfer fluorescence spectroscopy. Good discrimination between quadruplexes and duplex or single-stranded DNAs can be achieved by using the fluorescence spectrum of CV or the energy-transfer fluorescence spectra of CV and MG. In addition, by using energy-transfer fluorescence titrations of CV with G-quadruplexes, the binding-stoichiometry ratios of CV to G-quadruplexes can be determined. By using the fluorescence titrations of G-quadruplex-CV complexes with C-rich complementary strands, the fraction of G-rich oligonucleotide that engages in G-quadruplex structures in the presence of the complementary sequence can be measured. This study may provide a simple method for discrimination between quadruplexes and duplex or single-stranded DNAs and for measuring G-quadruplex percentages in the presence of the complementary C-rich sequences.
Biopolymers | 2009
De-Ming Kong; Li-Li Cai; Jun-Hong Guo; Jing Wu; Han-Xi Shen
It has been reported that the complexes formed by hemin and some G‐quadruplexes can be developed as a new class of DNAzyme with peroxidase activity. This kind of DNAzyme has received a great deal of attention. But to date, the actual G‐quadruplex structure that can provide hemin with enhanced peroxidase activity is in doubt. Herein, the G‐quadruplex structure of CatG4, a 21‐nucleotide DNA oligomer which was previously reported to bind hemin and the resulting complex exhibiting enhanced peroxidase activity, was characterized by fluorescence and circular dichroism measurements. The results suggest that the catalytically active form of CatG4 may be a unimolecular parallel quadruplex rather than a unimolecular chair‐type antiparallel quadruplex or a multistranded parallel quadruplex. In addition, the fluorescence analysis of labeled oligonucleotides may be developed as a supplementary tool for the study of DNA conformations.
Talanta | 2009
Jun-Hong Guo; Li-Na Zhu; De-Ming Kong; Han-Xi Shen
Triphenylmethane (TPM) dyes normally render rather weak fluorescence due to easy vibrational deexcitation. However, when they stack onto the two external G-quartets of a G-quadruplex (especially intramolecular G-quadruplex), such vibrations will be restricted, resulting in greatly enhanced fluorescence intensities. Thus, TPM dyes may be developed as sensitive G-quadruplex fluorescent probes. Here, fluorescence spectra and energy transfer spectra of five TPM dyes in the presence of G-quadruplexes, single- or double-stranded DNAs were compared. The results show that the fluorescence spectra of four TPM dyes can be used to discriminate intramolecular G-quadruplexes from intermolecular G-quadruplexes, single- and double-stranded DNAs. The energy transfer fluorescence spectra and energy transfer fluorescence titration can be used to distinguish G-quadruplexes (including intramolecular and intermolecular G-quadruplexes) from single- and double-stranded DNAs. Positive charges and substituent size in TPM dyes may be two important factors in influencing the binding stability of the dyes and G-quadruplexes.
Biosensors and Bioelectronics | 2012
Hui Li; Qi Zhang; Yang Cai; De-Ming Kong; Han-Xi Shen
DNAzymes have become an excellent choice for sensing applications. Based on DNAzymes, three generations of Pb(2+) fluorescent sensors have been reported. In these sensors, two oligonucleotide strands (substrate strand and enzyme strand) were used, which not only increased the complexity of the detection system, but also brought some difficulties for the use of the sensors at elevated temperatures. To overcome this problem, a single-stranded DNAzyme-based Pb(2+) fluorescent sensor was designed by combining the substrate sequence and the enzyme sequence into one oligonucleotide strand. The intramolecular duplex structure of this single-stranded DNAzyme kept the fluorophore and the quencher, labeled at its two ends, in close proximity; thus the background fluorescence was significantly suppressed. Using this fluorescent sensor, Pb(2+) quantitation can be achieved with high sensitivity and high selectivity. In addition, the extraordinary stability of the intramolecular duplex structure could assure a low background fluorescence at high temperature, even if the number of complementary base pairs between the substrate sequence and the enzyme sequence was reduced, allowing the sensor to work well over a wide temperature range. Similar performances of the fluorescent sensor at 4, 25 and 37°C suggested that this sensor has a good ability to resist temperature fluctuations.
Biosensors and Bioelectronics | 2013
Hui Li; Xiao-Xi Huang; De-Ming Kong; Han-Xi Shen; Yue Liu
A previously reported Cu²⁺-dependent DNAzyme/substrate complex was reconstructed in this work, which makes possible the use of an intramolecular stem-loop structure and is, therefore, a good choice for the design of Cu²⁺ sensors. To demonstrate this, a fluorescent sensor was designed on the basis of the reconstructed complex. In this sensor, the fluorophore/quencher pair was caged tightly in an intramolecular double-helix structure; thus, the background signal was greatly suppressed. Cu²⁺-dependent cleavage of the complex could cause the release of the fluorophore, leading to restoration of the fluorescence signal. High quenching efficiency provides the sensor with three important characteristics: high sensitivity, high temperature variation tolerance and high ionic strength tolerance. The proposed sensor allows specific detection of aqueous Cu²⁺ down to a limit of 0.6 nM, and the performance is independent of temperature and ionic strength in the range of 4-40 °C and 0.8-3.0 M NaCl, respectively. This work identifies a good choice for sensor design on the basis of DNAzymes containing triple-helix structures.
Analytica Chimica Acta | 2003
De-Ming Kong; Yan-Ping Huang; Xiao-Bin Zhang; Wei-Hong Yang; Han-Xi Shen; Huaifeng Mi
A novel method for the detection of specific nucleic acids in homogenous solution was developed. The method is based on the use of duplex probes in which fluorescent donor and quencher labeled on either oligonucleotide are held in close proximity, so that fluorescence is quenched. Amplification of the target sequence results in the cleavage of the probe and the resulting fluorescence can be detected. The fluorescent data analysis demonstrated that the duplex probes can specifically recognize the presence of target, and a significantly higher lever of relative fluorescent signal than TaqMan probes is obtainable. Combined with real-time PCR instruments, the assay can be used to quantify the input target molecules. As few as five copies of initial target molecules can be detected, and a large dynamic linear ranger (five orders of magnitude) is obtained.