Hanan Sela
Tel Aviv University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hanan Sela.
Science | 2009
Daolin Fu; Cristobal Uauy; Assaf Distelfeld; Ann E. Blechl; Lynn Epstein; Xianming Chen; Hanan Sela; Tzion Fahima; Jorge Dubcovsky
Stripe rust is a devastating fungal disease that afflicts wheat in many regions of the world. New races of Puccinia striiformis, the pathogen responsible for this disease, have overcome most of the known race-specific resistance genes. We report the map-based cloning of the gene Yr36 (WKS1), which confers resistance to a broad spectrum of stripe rust races at relatively high temperatures (25° to 35°C). This gene includes a kinase and a putative START lipid-binding domain. Five independent mutations and transgenic complementation confirmed that both domains are necessary to confer resistance. Yr36 is present in wild wheat but is absent in modern pasta and bread wheat varieties, and therefore it can now be used to improve resistance to stripe rust in a broad set of varieties.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Ruslan Kalendar; Jaakko Tanskanen; Wei Chang; Kristiina Antonius; Hanan Sela; Ofer Peleg; Alan H. Schulman
We report a group of TRIMs (terminal-repeat retrotransposons in miniature), which are small nonautonomous retrotransposons. These elements, named Cassandra, universally carry conserved 5S RNA sequences and associated RNA polymerase (pol) III promoters and terminators in their long terminal repeats (LTRs). They were found in all vascular plants investigated. Uniquely for LTR retrotransposons, Cassandra produces noncapped, polyadenylated transcripts from the 5S pol III promoter. Capped, read-through transcripts containing Cassandra sequences can also be detected in RNA and in EST databases. The predicted Cassandra RNA 5S secondary structures resemble those for cellular 5S rRNA, with high information content specifically in the pol III promoter region. Genic integration sites are common for Cassandra, an unusual feature for abundant retrotransposons. The 5S in each LTR produces a tandem 5S arrangement with an inter-5S spacing resembling that of cellular 5S. The distribution of 5S genes is very variable in flowering plants and may be partially explained by Cassandra activity. Cassandra thus appears both to have adapted a ubiquitous cellular gene for ribosomal RNA for use as a promoter and to parasitize an as-yet-unidentified group of retrotransposons for the proteins needed in its lifecycle.
Science | 2017
Raz Avni; Moran Nave; Omer Barad; Kobi Baruch; Sven O. Twardziok; Heidrun Gundlach; Iago Hale; Martin Mascher; Manuel Spannagl; Krystalee Wiebe; Katherine W. Jordan; Jasline Deek; Batsheva Ben-Zvi; Gil Ben-Zvi; Axel Himmelbach; Ron MacLachlan; Andrew G. Sharpe; Allan K. Fritz; Roi Ben-David; Hikmet Budak; Tzion Fahima; Abraham B. Korol; Justin D. Faris; Alvaro G. Hernandez; Mark A. Mikel; Avraham A. Levy; Brian J. Steffenson; Marco Maccaferri; Roberto Tuberosa; Luigi Cattivelli
Genomics and domestication of wheat Modern wheat, which underlies the diet of many across the globe, has a long history of selection and crosses among different species. Avni et al. used the Hi-C method of genome confirmation capture to assemble and annotate the wild allotetraploid wheat (Triticum turgidum). They then identified the putative causal mutations in genes controlling shattering (a key domestication trait among cereal crops). They also performed an exome capture–based analysis of domestication among wild and domesticated genotypes of emmer wheat. The findings present a compelling overview of the emmer wheat genome and its usefulness in an agricultural context for understanding traits in modern bread wheat. Science, this issue p. 93 A polyploid wheat genome assembly elucidates wheat domestication history. Wheat (Triticum spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat’s domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer (T. turgidum ssp. dicoccoides). We report a 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity. With this fully assembled polyploid wheat genome, we identified the causal mutations in Brittle Rachis 1 (TtBtr1) genes controlling shattering, a key domestication trait. A study of genomic diversity among wild and domesticated accessions revealed genomic regions bearing the signature of selection under domestication. This reference assembly will serve as a resource for accelerating the genome-assisted improvement of modern wheat varieties.
Genome Biology | 2013
Dina Raats; Zeev Frenkel; Tamar Krugman; Itay Dodek; Hanan Sela; Hana Šimková; Federica Magni; Federica Cattonaro; Sonia Vautrin; Hélène Bergès; Thomas Wicker; Beat Keller; Philippe Leroy; Romain Philippe; Etienne Paux; Jaroslav Doležel; Catherine Feuillet; Abraham B. Korol; Tzion Fahima
BackgroundThe wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution.ResultsFingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere.ConclusionsThis study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.
Molecular Plant Pathology | 2012
Hanan Sela; Laurentiu N. Spiridon; Andrei J. Petrescu; Martin Akerman; Yael Mandel-Gutfreund; Eviatar Nevo; Caroline Loutre; Beat Keller; Alan H. Schulman; Tzion Fahima
In this study, we explore the diversity and its distribution along the wheat leaf rust resistance protein LR10 three-dimensional structure. Lr10 is a leaf rust resistance gene encoding a coiled coil-nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR) class of protein. Lr10 was cloned and sequenced from 58 accessions representing diverse habitats of wild emmer wheat in Israel. Nucleotide diversity was very high relative to other wild emmer wheat genes (π= 0.029). The CC domain was found to be the most diverse domain and subject to positive selection. Superimposition of the diversity on the CC three-dimensional structure showed that some of the variable and positively selected residues were solvent exposed and may interact with other proteins. The LRR domain was relatively conserved, but showed a hotspot of amino acid variation between two haplotypes in the ninth repeat. This repeat was longer than the other LRRs, and three-dimensional modelling suggested that an extensive α helix structure was formed in this region. The two haplotypes also differed in splicing regulation motifs. In genotypes with one haplotype, an intron was alternatively spliced in this region, whereas, in genotypes with the other haplotype, this intron did not splice at all. The two haplotypes are proposed to be ancient and maintained by balancing selection.
Molecular Plant-microbe Interactions | 2014
Hanan Sela; Laurentiu N. Spiridon; Haim Ashkenazi; Navreet K. Bhullar; Susanne Brunner; Andrei-Jose Petrescu; Tzion Fahima; Beat Keller; Tina Jordan
The Pm3 gene confers resistance against wheat powdery mildew. Studies of Pm3 diversity have shown that Pm3 alleles isolated from southern populations of wild emmer wheat located in Lebanon, Jordan, Israel, and Syria are more diverse and more distant from bread wheat alleles than alleles from the northern wild wheat populations located in Turkey, Iran, and Iraq. Therefore, southern populations from Israel were studied extensively to reveal novel Pm3 alleles that are absent from the cultivated gene pool. Candidate Pm3 genes were isolated via a polymerase chain reaction cloning approach. Known and newly identified Pm3 genes were subjected to variation analysis and polymorphic amino acid residues were superimposed on a three-dimensional (3D) model of PM3. The region of highest interspecies diversity between Triticum aestivum and T. dicoccoides lies in leucine-rich repeats (LRR) 19 to 24, whereas most intraspecies diversity in T. aestivum is located in LRR 25 to 28. Interestingly, these two regions are separated by one large LRR whose propensity for flexibility facilitates the conformation of the PM3 LRR domain into two differently structured models. The combination of evolutionary and protein 3D structure analysis revealed that Pm3 genes in wild and domesticated wheat show different evolutionary histories which might have been triggered through different interactions with the powdery mildew pathogen.
BMC Evolutionary Biology | 2012
Xiaoying Ma; Hanan Sela; Genlin Jiao; Chao Li; Aidong Wang; Dmitry Weiner; Shun Sakuma; Tamar Krugman; Eviatar Nevo; Takao Komatsuda; Abraham B. Korol; Guoxiong Chen
BackgroundThe cuticle is an important adaptive structure whose origin played a crucial role in the transition of plants from aqueous to terrestrial conditions. HvABCG31/Eibi1 is an ABCG transporter gene, involved in cuticle formation that was recently identified in wild barley (Hordeum vulgare ssp. spontaneum). To study the genetic variation of HvABCG31 in different habitats, its 2 kb promoter region was sequenced from 112 wild barley accessions collected from five natural populations from southern and northern Israel. The sites included three mesic and two xeric habitats, and differed in annual rainfall, soil type, and soil water capacity.ResultsPhylogenetic analysis of the aligned HvABCG31 promoter sequences clustered the majority of accessions (69 out of 71) from the three northern mesic populations into one cluster, while all 21 accessions from the Dead Sea area, a xeric southern population, and two isolated accessions (one from a xeric population at Mitzpe Ramon and one from the xeric ‘African Slope’ of “Evolution Canyon”) formed the second cluster. The southern arid populations included six haplotypes, but they differed from the consensus sequence at a large number of positions, while the northern mesic populations included 15 haplotypes that were, on average, more similar to the consensus sequence. Most of the haplotypes (20 of 22) were unique to a population. Interestingly, higher genetic variation occurred within populations (54.2%) than among populations (45.8%). Analysis of the promoter region detected a large number of transcription factor binding sites: 121–128 and 121–134 sites in the two southern arid populations, and 123–128,125–128, and 123–125 sites in the three northern mesic populations. Three types of TFBSs were significantly enriched: those related to GA (gibberellin), Dof (DNA binding with one finger), and light.ConclusionsDrought stress and adaptive natural selection may have been important determinants in the observed sequence variation of HvABCG31 promoter. Abiotic stresses may be involved in the HvABCG31 gene transcription regulations, generating more protective cuticles in plants under stresses.
Physiologia Plantarum | 2010
Jianping Cheng; Jun Yan; Hanan Sela; Jacob Manisterski; Dalia Lewinsohn; Eviatar Nevo; Tzion Fahima
Wild relatives of crop plants may serve as a promising source for screening for new disease resistance genes that can be utilized in breeding programs. Triticum dicoccoides, the wild progenitor of most cultivated wheats, was shown to harbor many resistance genes against the major diseases attacking cultivated wheat. Stripe rust is a devastating fungal disease that attacks wheat in many regions of the world. New races of Puccinia striiformis Westend. f. sp. tritici, the causative agent of stripe rust, have overcome most of the known Yr resistance genes in wheat. Therefore, there is a need to search for new resistance genes in the T. dicoccoides gene pool. A set of 120 T. dicoccoides accessions, collected from 13 populations representing different habitats in Israel and vicinity, was tested for resistance to three prevalent stripe rust races (38E134, 6E16 and 6E0). Of these 120 accessions, 14, 8 and 12% were resistant to races 38E134, 6E16 and 6E0, respectively, while 57, 2 and 4% were moderately resistant to these races, respectively. A unique resistance was found in the population of Mt Hermon where >80% of the accessions showed resistance to all races. Distribution of infection types (ITs) of race 38E134 showed a normal distribution that can fit a quantitative pattern of response, while the distributions of ITs of races 6E16 and 6E0 had excess of extreme values and therefore showing a qualitative pattern of response. anova testing the main factor effects and interaction showed significant effects of population, race and their interaction on IT. Significant positive correlations were obtained between the resistance to races 6E16 and 6E0 and humidity variables of the collections sites, while resistance to race 38E134 was positively correlated with temperature variables. These results show that the pathogen race can determine the type of resistance response, qualitative or quantitative, in the stripe rust-T. dicoccoides pathosystem. The obtained results also reveal that the distribution of resistance to different pathogen races can be affected by different climatic factors.
Theoretical and Applied Genetics | 2017
Guotai Yu; Nicolas Champouret; Burkhard Steuernagel; Pablo Olivera; Jamie Simmons; Cole Williams; Ryan Johnson; Matthew J. Moscou; Inmaculada Hernández-Pinzón; Phon Green; Hanan Sela; Eitan Millet; Jonathan D. G. Jones; Eric R. Ward; Brian J. Steffenson; Brande B. H. Wulff
Key messageWe identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen.AbstractStem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.
Plant Disease | 2014
Jeness C. Scott; Jacob Manisterski; Hanan Sela; Pnina Ben-Yehuda; Brian J. Steffenson
Widely virulent races of the stem rust pathogen (Puccinia graminis f. sp. tritici) such as those isolated from Africa (e.g., TTKSK, isolate synonym Ug99) threaten wheat production worldwide. To identify Aegilops accessions with effective resistance to such virulent stem rust races, up to 10 different species from Israel were evaluated against African races TTKSK, TTKST, and TTTSK and the Israeli race TTTTC as seedlings in the greenhouse. A wide diversity of stem rust reactions was observed across the Aegilops spp. and ranged from highly resistant (i.e., infection type 0) to highly susceptible (infection type 4). The frequency of resistance within a species to races TTTTC and TTKSK ranged from 7 and 14%, respectively, in Aegilops searsii to 98 and 100% in AE. speltoides. In all, 346 accessions were found resistant to the three African races and 138 accessions were resistant (or heterogeneous with a resistant component) to all four races. The species with broadly resistant accessions included Ae. longissima (59 accessions), Ae. peregrina (47 accessions), Ae. sharonensis (15 accessions), Ae. geniculata (9 accessions), Ae. kotschyi (5 accessions), and Ae. bicornis (3 accessions). Few geographical trends or correlations with climatic variables were observed with respect to stem rust resistance in the Aegilops spp. The exception was Ae. longissima infected with race TTTTC, where a high frequency of resistance was found in central and northern Israel and a very low frequency in southern Israel (Negev desert region). This geographical trend followed a pattern of annual precipitation in Israel, and a significant correlation was found between this variable and resistance in Ae. longissima. Although difficult, it is feasible to transfer resistance genes from Aegilops spp. into wheat through conventional wide-crossing schemes or, alternatively, a cloning and transformation approach. The broadly resistant accessions identified in this study will be valuable in these research programs.