Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanayuki Okura is active.

Publication


Featured researches published by Hanayuki Okura.


BMC Cell Biology | 2012

Human adipose tissue-derived multilineage progenitor cells exposed to oxidative stress induce neurite outgrowth in PC12 cells through p38 MAPK signaling

Mariko Moriyama; Hiroyuki Moriyama; Ayaka Ueda; Yusuke Nishibata; Hanayuki Okura; Akihiro Ichinose; Akifumi Matsuyama; Takao Hayakawa

BackgroundAdipose tissues contain populations of pluripotent mesenchymal stem cells that also secrete various cytokines and growth factors to support repair of damaged tissues. In this study, we examined the role of oxidative stress on human adipose-derived multilineage progenitor cells (hADMPCs) in neurite outgrowth in cells of the rat pheochromocytoma cell line (PC12).ResultsWe found that glutathione depletion in hADMPCs, caused by treatment with buthionine sulfoximine (BSO), resulted in the promotion of neurite outgrowth in PC12 cells through upregulation of bone morphogenetic protein 2 (BMP2) and fibroblast growth factor 2 (FGF2) transcription in, and secretion from, hADMPCs. Addition of N-acetylcysteine, a precursor of the intracellular antioxidant glutathione, suppressed the BSO-mediated upregulation of BMP2 and FGF2. Moreover, BSO treatment caused phosphorylation of p38 MAPK in hADMPCs. Inhibition of p38 MAPK was sufficient to suppress BMP2 and FGF2 expression, while this expression was significantly upregulated by overexpression of a constitutively active form of MKK6, which is an upstream molecule from p38 MAPK.ConclusionsOur results clearly suggest that glutathione depletion, followed by accumulation of reactive oxygen species, stimulates the activation of p38 MAPK and subsequent expression of BMP2 and FGF2 in hADMPCs. Thus, transplantation of hADMPCs into neurodegenerative lesions such as stroke and Parkinson’s disease, in which the transplanted hADMPCs are exposed to oxidative stress, can be the basis for simple and safe therapies.


Stem Cells and Development | 2014

Role of Notch Signaling in the Maintenance of Human Mesenchymal Stem Cells Under Hypoxic Conditions

Hiroyuki Moriyama; Mariko Moriyama; Haruki Isshi; Shin Ishihara; Hanayuki Okura; Akihiro Ichinose; Toshiyuki Ozawa; Akifumi Matsuyama; Takao Hayakawa

Human adipose tissue-derived multilineage progenitor cells (hADMPCs) are attractive for cell therapy and tissue engineering because of their multipotency and ease of isolation without serial ethical issues. However, their limited in vitro lifespan in culture systems hinders their therapeutic application. Some somatic stem cells, including hADMPCs, are known to be localized in hypoxic regions; thus, hypoxia may be beneficial for ex vivo culture of these stem cells. These cells exhibit a high level of glycolytic metabolism in the presence of high oxygen levels and further increase their glycolysis rate under hypoxia. However, the physiological role of glycolytic activation and its regulatory mechanisms are still incompletely understood. Here, we show that Notch signaling is required for glycolysis regulation under hypoxic conditions. Our results demonstrate that 5% O2 dramatically increased the glycolysis rate, improved the proliferation efficiency, prevented senescence, and maintained the multipotency of hADMPCs. Intriguingly, these effects were not mediated by hypoxia-inducible factor (HIF), but rather by the Notch signaling pathway. Five percent O2 significantly increased the level of activated Notch1 and expression of its downstream gene, HES1. Furthermore, 5% O2 markedly increased glucose consumption and lactate production of hADMPCs, which decreased back to normoxic levels on treatment with a γ-secretase inhibitor. We also found that HES1 was involved in induction of GLUT3, TPI, and PGK1 in addition to reduction of TIGAR and SCO2 expression. These results clearly suggest that Notch signaling regulates glycolysis under hypoxic conditions and, thus, likely affects the cell lifespan via glycolysis.


Biochemical and Biophysical Research Communications | 2012

Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction.

Hanayuki Okura; Ayami Saga; Mayumi Soeda; Shigeru Miyagawa; Yoshiki Sawa; Takashi Daimon; Akihiro Ichinose; Akifumi Matsuyama

Transplantation of human cardiomyoblast-like cells (hCLCs) from human adipose tissue-derived multi-lineage progenitor cells improved left ventricular function and survival of rats with myocardial infarction. Here we examined the effect of intracoronary artery transplantation of human CLCs in a swine model of chronic heart failure. Twenty-four pigs underwent balloon-occlusion of the first diagonal branch followed by reperfusion, with a second balloon-occlusion of the left ascending coronary artery 1 week later followed by reperfusion. Four weeks after the second occlusion/reperfusion, 17 of the 18 surviving animals with severe chronic MI (ejection fraction <35% by echocardiography) were immunosuppressed then randomly assigned to receive either intracoronary artery transplantation of hCLCs hADMPCs or placebo lactic Ringers solution with heparin. Intracoronary artery transplantation was followed by the distribution of DiI-stained hCLCs into the scarred myocardial milieu. Echocardiography at post-transplant days 4 and 8 weeks showed rescue and maintenance of cardiac function in the hCLCs transplanted group, but not in the control animals, indicating myocardial functional recovery by hCLCs intracoronary transplantation. At 8 week post-transplantation, 7 of 8 hCLCs transplanted animals were still alive compared with only 1 of the 5 control (p=0.0147). Histological studies at week 12 post-transplantation demonstrated engraftment of the pre DiI-stained hCLCs into the scarred myocardium and their expression of human specific alpha-cardiac actin. Human alpha cardiac actin-positive cells also expressed cardiac nuclear factors; nkx2.5 and GATA-4. Our results suggest that intracoronary artery transplantation of hCLCs is a potentially effective therapeutic strategy for future cardiac tissue regeneration.


Biochemical and Biophysical Research Communications | 2015

Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

Keigo Sawada; Masahide Takedachi; Satomi Yamamoto; Chiaki Morimoto; Masao Ozasa; Tomoaki Iwayama; Chun Man Lee; Hanayuki Okura; Akifumi Matsuyama; Masahiro Kitamura; Shinya Murakami

Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration.


Biochemical and Biophysical Research Communications | 2015

Therapeutic potential of human adipose tissue-derived multi-lineage progenitor cells in liver fibrosis.

Hanayuki Okura; Mayumi Soeda; Mitsuko Morita; Maiko q Fujita; Kyoko Naba; Chiyoko Ito; Akihiro Ichinose; Akifumi Matsuyama

INTRODUCTION Liver fibrosis is characterized by excessive accumulation of extracellular matrix. In a mouse model of liver fibrosis, systemic injection of bone marrow mesenchymal stem cells (BM-MSCs) was considered to rescue the diseased phenotype. The aim of this study was to assess the effectiveness of human adipose tissue-derived multi-lineage progenitor cells (hADMPCs) in improving liver fibrosis. METHODS AND RESULTS hADMPCs were isolated from subcutaneous adipose tissues of healthy volunteers and expanded. Six week-old male nude mice were treated with carbon tetra-chloride (CCl4) by intraperitoneal injection twice a week for 6 weeks, followed by a tail vein injection of hADMPCs or placebo control. After 6 more weeks of CCl4 injection (12 weeks in all), nude mice with hADMPCs transplants exhibited a significant reduction in liver fibrosis, as evidenced by Sirius Red staining, compared with nude mice treated with CCl4 for 12 weeks without hADMPCs transplants. Moreover, serum glutamic pyruvate transaminase and total bilirubin levels in hADMPCs-treated nude mice were lower levels than those in placebo controls. Production of fibrinolytic enzyme MMPs from hADMPCs were examined by ELISA and compared to that from BM-MSCs. MMP-2 levels in the culture media were not significantly different, whereas those of MMP-3 and -9 of hADMPCs were higher than those by BM-MSCs. CONCLUSION These results showed the mode of action and proof of concept of systemic injection of hADMPCs, which is a promising therapeutic intervention for the treatment of patients with liver fibrosis.


Regenerative Therapy | 2015

Characterization of in vivo tumorigenicity tests using severe immunodeficient NOD/Shi-scid IL2Rγnull mice for detection of tumorigenic cellular impurities in human cell-processed therapeutic products

Shinji Kusakawa; Kazuhiko Machida; Satoshi Yasuda; Nozomi Takada; Takuya Kuroda; Rumi Sawada; Hanayuki Okura; Hideki Tsutsumi; Shin Kawamata; Yoji Sato

The contamination of human cell-processed therapeutic products (hCTPs) with tumorigenic cells is one of the major concerns in the manufacturing and quality control of hCTPs. However, no quantitative method for detecting the tumorigenic cellular impurities is currently standardized. NOD/Shi-scid IL2Rγnull (NOG) mice have shown high xeno-engraftment potential compared with other well-known immunodeficient strains, e.g. nude mice. Hypothesizing that tumorigenicity test using NOG mice could be a sensitive and quantitative method to detect a small amount of tumorigenic cells in hCTPs, we examined tumor formation after subcutaneous transplantation of HeLa cells, as a model of tumorigenic cells, in NOG mice and nude mice. Sixteen weeks after inoculation, the 50% tumor-producing dose (TPD50) values of HeLa cells were stable at 1.3 × 104 and 4.0 × 105 cells in NOG and nude mice, respectively, indicating a 30-fold higher sensitivity of NOG mice compared to that of nude mice. Transplanting HeLa cells embedded with Matrigel in NOG mice further decreased the TPD50 value to 7.9 × 10 cells, leading to a 5000-fold higher sensitivity, compared with that of nude mice. Additionally, when HeLa cells were mixed with 106 or 107 human mesenchymal stem cells as well as Matrigel, the TPD50 values in NOG mice were comparable to those of HeLa cells alone with Matrigel. These results suggest that the in vivo tumorigenicity test using NOG mice with Matrigel is a highly sensitive and quantitative method to detect a trace amount of tumorigenic cellular impurities in human somatic cells, which can be useful in the quality assessment of hCTPs.


PLOS ONE | 2013

Tightly regulated and homogeneous transgene expression in human adipose-derived mesenchymal stem cells by lentivirus with tet-off system.

Hiroyuki Moriyama; Mariko Moriyama; Kei Sawaragi; Hanayuki Okura; Akihiro Ichinose; Akifumi Matsuyama; Takao Hayakawa

Genetic modification of human adipose tissue–derived multilineage progenitor cells (hADMPCs) is highly valuable for their exploitation in therapeutic applications. Here, we have developed a novel single tet-off lentiviral vector platform. This vector combines (1) a modified tetracycline (tet)-response element composite promoter, (2) a multi-cistronic strategy to express an improved version of the tet-controlled transactivator and the blasticidin resistance gene under the control of a ubiquitous promoter, and (3) acceptor sites for easy recombination cloning of the gene of interest. In the present study, we used the cytomegalovirus (CMV) or the elongation factor 1 α (EF-1α) promoter as the ubiquitous promoter, and EGFP was introduced as the gene of interest. hADMPCs transduced with a lentiviral vector carrying either the CMV promoter or the EF-1α promoter were effectively selected by blasticidin without affecting their stem cell properties, and EGFP expression was strictly regulated by doxycycline (Dox) treatment in these cells. However, the single tet-off lentiviral vector carrying the EF-1α promoter provided more homogenous expression of EGFP in hADMPCs. Intriguingly, differentiated cells from these Dox-responsive cell lines constitutively expressed EGFP only in the absence of Dox. This single tet-off lentiviral vector thus provides an important tool for applied research on hADMPCs.


Biochemical and Biophysical Research Communications | 2011

HMG-CoA reductase inhibitor augments the serum total cholesterol-lowering effect of human adipose tissue-derived multilineage progenitor cells in hyperlipidemic homozygous Watanabe rabbits

Ayami Saga; Hanayuki Okura; Mayumi Soeda; Junko Tani; Yuichi Fumimoto; Hiroshi Komoda; Mariko Moriyama; Hiroyuki Moriyama; Shizuya Yamashita; Akihiro Ichinose; Takashi Daimon; Takao Hayakawa; Akifumi Matsuyama

Familial hypercholesterolemia (FH) is an autosomal codominant disease characterized by high concentrations of proatherogenic lipoproteins secondary to deficiency in low-density lipoprotein (LDL) receptor. We reported recently the use of in situ stem cell therapy of human adipose tissue-derived multilineage progenitor cells (hADMPCs) in lowering serum total cholesterol in the homozygous Watanabe heritable hyperlipidemic (WHHL) rabbits, an animal model of homozygous FH. Here we demonstrate that pravastatin, an HMG-CoA reductase inhibitor, augmented the cholesterol-lowering effect of transplanted hADMPCs and enhanced LDL clearance in homozygous WHHL rabbit. The results suggest the potential beneficial effects of in situ stem cell therapy in concert with appropriately selected pharmaceutical agents, in regenerative medicine.


Journal of Stem Cell Research & Therapy | 2016

Spermine Treated-Adipose Tissue-Derived Multi-Lineage Progenitor Cells Improve Left Ventricular Dysfunction in a Swine Model of Chronic Myocardial Infarction

Hanayuki Okura; Mitsuko Morita; Maiko q Fujita; Kyoko Naba; Nozomi Hasebe-Takada; Akihiro Ichinose; Akifumi Matsuyama

Background: The polyamine spermine enhances differentiation of mouse embryonic stem cells into cardiac lineage. The aim of this study was to determine the effects of spermine on the differentiation of human adipose tissuederived multi-lineage progenitor cells (hADMPCs) into cardiomyocytes both in vitro and in vivo and any subsequent functional effect in a swine model of chronic myocardial infarction. Methods and results: Spermine increased the expression of cardiac markers nkx2.5, islet-1, α-cardiac actin and cardiac troponin I (to 11.2-, 27.5-, 43.6- and 19.1-fold, relative to baseline, respectively) in hADMPCs. Chronic myocardial infarction model with left ventricular dysfunction was induced by balloon occlusion of the diagonal coronary artery followed by reperfusion, with subsequent similar procedure conducted one week later in the left ascending coronary artery (#6). Four weeks later, the immunosuppressed animals (with CyA 5.0 mg/kg intramuscularly (i.m) body weight/day) were transplanted with spermine-treated hADMPC (1×105 , 3×105 , 1×106 or 3×106 cells/kg body weight) via the coronary artery (#6). Cardiac function was assessed by echocardiography at 0, 4, 8 and 12 weeks post-transplantation. Transplantation of these cells improved cardiac function and the most effective dose was 3x105 cells/kg (ejection fraction; 33.4%, 47.0%, 51.5% and 52.9% at 0, 4, 8 and 12 weeks post-transplantation, respectively). At 12-week post-transplantation, spermine-treated hADMPCs differentiated into human-specific troponin I- and α-cardiac actin-positive cells in vivo. Conclusion: Spermine induced differentiation of hADMPCs into cardiomyocytes both in vitro and in vivo and cellular cardiomyoplasty improved cardiac function. Cellular cardiomyoplasty using hADMPC could be potentially effective cell-based therapy.


Journal of Stem Cell Research & Therapy | 2017

History of Development and Regulations for Regenerative Medicines in Japan

Hanayuki Okura; Akifumi Matsuyama

Regenerative medicinal products were dealt with fewer than two categories only, pharmaceutical products and medical devices in the previous Pharmaceutical Affairs Law (PAL). Because regenerative medicinal products could not fully fit within the conventional regulatory contexts for pharmaceuticals, they were less available to the public. To overcome this issue, the Japanese parliament has legislated Laws for the Promotion of Comprehensive Measures to Facilitate Swift Distribution and Safe Use of Regenerative Medicines available to the Public (Regenerative Medicine Promotion Act). The Japanese government has changed the regulatory framework for regenerative medicinal products, 1) upgrading of directives for human stem cell-based clinical research to the Law concerning the Establishment of Safety of Regenerative Medicine Materials (Regenerative Medicine Safety Assurance Act), and 2) setting a new category for regenerative medicinal products in the Pharmaceutical and Medical Device Act (PMD Act), the latest revised PAL. It is noteworthy that the PMD Act permits expedited, conditional, and time-limited marketing approval as an exception for non-homogeneous regenerative medicinal products when efficacy is anticipated while safety is demonstrated. With these revisions of the regulatory framework for regenerative medicinal products, two tracks have become available for societal contribution to regenerative medicines. Japan is the only country where society has these two tracks, and social experiments on regenerative medicines in spectacular proportion are launched for societal contribution. We review here the history of the struggle to accelerate the availability of regenerative medicinal products for patients in Japan.

Collaboration


Dive into the Hanayuki Okura's collaboration.

Top Co-Authors

Avatar

Akifumi Matsuyama

Foundation for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayami Saga

Foundation for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Mayumi Soeda

Foundation for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge