Hancheol Jeon
Hanyang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hancheol Jeon.
Environmental Science & Technology | 2015
Sung Gil Hong; Hancheol Jeon; Han Sol Kim; Seung Hyun Jun; EonSeon Jin; Jungbae Kim
We developed a process for one-pot CO2 conversion and utilization based on simple conversion of CO2 to bicarbonate at ambient temperature with no energy input, by using the cross-linking-based composites of carboxylated polyaniline nanofibers (cPANFs) and carbonic anhydrase. Carbonic anhydrase was immobilized on cPANFs via the approach of magnetically separable enzyme precipitate coatings (Mag-EPC), which consists of covalent enzyme attachment, enzyme precipitation, and cross-linking with amine-functionalized magnetic nanoparticles. Mag-EPC showed a half-life of 236 days under shaking, even resistance to 70% ethanol sterilization, and recyclability via facile magnetic separation. For one-pot CO2 conversion and utilization, Mag-EPC was used to accelerate the growth of microalga by supplying bicarbonate from CO2, representing 1.8-fold increase of cell concentration when compared to the control sample. After two repeated uses via simple magnetic separation, the cell concentration with Mag-EPC was maintained as high as the first cycle. This one-pot CO2 conversion and utilization is an alternative as well as complementary process to adsorption-based CO2 capture and storage as an environmentally friendly approach, demanding no energy input based on the effective action of the stabilized enzyme system.
Journal of Microbiology | 2013
Hancheol Jeon; Yew Lee; Kwang Suk Chang; Choul-Gyun Lee; EonSeon Jin
Non-food-based biofuel feedstocks are in high demand worldwide. Among the various feedstocks, microalgae are the most promising feedstock for mitigating atmospheric CO2 and producing biodiesel. In this study, various concentrations of CO2, from 0.03 to 12%, were used to investigate their effect on the cell growth, biomass and lipid production and fatty acid composition of Dunaliella sp. in a closed photobioreactor. The results showed that the highest biomass and total lipids, 521 mg/L/d and 40 mg/L/d, respectively, were produced with 5% CO2 aeration during the logarithmic growth phase. The oleic acid (18:1n9c) and elaidic acid (18:1n9t) contents were increased approximately two fold. The physiological responses of Dunaliella sp. at 10% CO2 were similar to those at 5% CO2. Therefore, the present results suggest that 5–10% is a suitable CO2 concentration range for Dunaliella sp. growth to mitigate atmospheric CO2 and increase biofuel production.
Enzyme and Microbial Technology | 2014
Kwang Suk Chang; Hancheol Jeon; Seungbeom Seo; Yew Lee; EonSeon Jin
In order to mitigate CO2 accumulation and decrease the rate of global warming and climate change, we previously presented a strategy for the development of an efficient CO2 capture and utilization system. The system employs two recombinant enzymes, carbonic anhydrase and phosphoenolpyruvate carboxylase, which were originated from microalgae. Although utilization of this integrated system would require a large quantity of high quality PEPCase protein, such quantities could be produced by increasing the solubility of the Phaeodactylum tricornutum PEPCase 1 (PtPEPCase 1) protein in the Escherichia coli heterologous expression system. We first expressed the putative mitochondria targeting peptide- and chloroplast transit peptide-truncated proteins of PtPEPCase 1, mPtPEPCase 1 and cPtPEPCase 1, respectively, in E. coli. After affinity chromatography, the amount of purified PEPCase protein from 500mL of E. coli culture was greatest for cPtPEPCase 1 (1.99mg), followed by mPtPEPCase 1 (0.82mg) and PtPEPCase 1 (0.61mg). Furthermore, the enzymatic activity of mPtPEPCase 1 and cPtPEPCase 1 showed approximately 1.6-fold (32.19 units/mg) and 3-fold (59.48 units/mg) increases, respectively. Therefore, cPtPEPCase 1 purified using the E. coli heterogeneous expression system could be a strong candidate for a platform technology to capture CO2 and produce value-added four-carbon platform chemicals.
Marine Drugs | 2017
Minjae Kim; Junhak Ahn; Hancheol Jeon; EonSeon Jin
Zeaxanthin is a xanthophyll pigment that is regarded as one of the best carotenoids for the prevention and treatment of degenerative diseases. In the worldwide natural products market, consumers prefer pigments that have been produced from biological sources. In this study, a Dunaliella tertiolecta strain that has 10–15% higher cellular zeaxanthin content than the parent strain (zea1), was obtained by random mutagenesis using ethyl methanesulfonate (EMS) as a mutagen. This mutant, mp3, was grown under various salinities and light intensities to optimize culture conditions for zeaxanthin production. The highest cellular zeaxanthin content was observed at 1.5 M NaCl and 65–85 μmol photons·m−2·s−1, and the highest daily zeaxanthin productivity was observed at 0.6 M NaCl and 140–160 μmol photons·m−2·s−1. The maximal yield of zeaxanthin from mp3 in fed-batch culture was 8 mg·L−1, which was obtained at 0.6 M NaCl and 140–160 μmol photons·m−2·s−1. These results suggest that random mutagenesis with EMS is useful for generating D. tertiolecta strains with increased zeaxanthin content, and also suggest optimal culture conditions for the enhancement of biomass and zeaxanthin production by the zeaxanthin accumulating mutant strains.
Algal Research-Biomass Biofuels and Bioproducts | 2015
Seungbeom Seo; Hancheol Jeon; Seongbin Hwang; EonSeon Jin; Kwang Suk Chang
Applied Biochemistry and Biotechnology | 2012
Bashistha Kumar Kanth; Kiha Min; Shipra Kumari; Hancheol Jeon; Eon Seon Jin; Jinwon Lee; Seung Pil Pack
Bioprocess and Biosystems Engineering | 2013
Kwang Suk Chang; Hancheol Jeon; Man Bock Gu; Seung Pil Pack; EonSeon Jin
Algal Research-Biomass Biofuels and Bioproducts | 2017
Seungbeom Seo; Hancheol Jeon; Kwang Suk Chang; EonSeon Jin
Algal Research-Biomass Biofuels and Bioproducts | 2016
Hancheol Jeon; Jooyeon Jeong; Kwangryul Baek; Zaid McKie-Krisberg; Jürgen E.W. Polle; EonSeon Jin
Planta | 2015
Jing Yue Zhang; Hancheol Jeon; Sang Jun Sim; Yew Lee; EonSeon Jin