Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanfei Yan is active.

Publication


Featured researches published by Hanfei Yan.


Applied Physics Letters | 2008

Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens

Hyon Chol Kang; Hanfei Yan; Robert Winarski; Martin Holt; J. Maser; Chian Liu; Ray Conley; Stefan Vogt; Albert T. Macrander; G. Brian Stephenson

We report improved results for hard x-ray focusing using a multilayer Laue lens MLL. We have measured a line focus of 16 nm width with an efficiency of 31% at a wavelength =0.064 nm 19.5 keV using a partial MLL structure with an outermost zone width of 5 nm. The results are in good agreement with the theoretically predicted performance.


Physical Review B | 2007

Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture

Hanfei Yan; J. Maser; Albert T. Macrander; Qun Shen; Stefan Vogt; G. Brian Stephenson; Hyon Chol Kang

We present a formalism of x-ray dynamical diffraction from volume diffractive optics with large numerical aperture and high aspect ratio, in an analogy to the Takagi-Taupin equations [Acta Crystallogr. 15, 1311 (1962); Bull. Soc. Fr. Mineral. Crystallogr. 87, 469 (1964)] for strained single crystals. We derive a set of basic equations for dynamical diffraction from volume diffractive optics, which enable us to study the focusing property of these optics with various grating profiles. We study volume diffractive optics that satisfy the Bragg condition to various degrees, namely, flat, tilted, and wedged geometries, and derive the curved geometries required for ultimate focusing. We show that the curved geometries satisfy both the Bragg condition everywhere and phase requirement for point focusing and effectively focus hard x rays to a scale close to the wavelength. Our calculations were made for an x-ray wavelength of 0.064 nm (19.5 keV).


Journal of Physics D | 2014

Hard x-ray nanofocusing by multilayer Laue lenses

Hanfei Yan; Ray Conley; Nathalie Bouet; Yong S. Chu

Multilayer Laue lens (MLL) is a new class of x-ray optics that offer great promise for achieving nanometre-level spatial resolution by focusing hard x-rays. Fabricating an MLL via thin-film deposition provides the means to achieve a linear Fresnel-zone plate structure with zone widths below 1?nm, while retaining a virtually limitless aspect ratio. Despite its similarity to the Fresnel-zone plate, MLL exhibits categorically distinctive focusing properties and their fabrication comes with a wide array of challenges. This article provides a comprehensive review of advances in MLLs, and includes extensive theoretical modelling on focusing performance, discussion on fabrication challenges, their current capabilities and notable results from x-ray focusing experiments.


Optics Express | 2011

Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses

Hanfei Yan; Volker Rose; Deming Shu; Enju Lima; Hyon Chol Kang; Ray Conley; Chian Liu; Nima Jahedi; Albert T. Macrander; G. Brian Stephenson; Martin Holt; Yong S. Chu; Ming Lu; J. Maser

Hard x-ray microscopy with nanometer resolution will open frontiers in the study of materials and devices, environmental sciences, and life sciences by utilizing the unique characterization capabilities of x-rays. Here we report two-dimensional nanofocusing by multilayer Laue lenses (MLLs), a type of diffractive optics that is in principle capable of focusing x-rays to 1 nm. We demonstrate focusing to a 25 × 27 nm(2) FWHM spot with an efficiency of 2% at a photon energy of 12 keV, and to a 25 × 40 nm(2) FWHM spot with an efficiency of 17% at a photon energy of 19.5 keV.


Scientific Reports | 2013

11 nm hard X-ray focus from a large-aperture multilayer Laue lens

Xiaojing Huang; Hanfei Yan; Evgeny Nazaretski; Raymond Conley; Nathalie Bouet; Juan Zhou; Kenneth Lauer; Li Li; Daejin Eom; D. Legnini; Ross Harder; Ian K. Robinson; Yong S. Chu

The focusing performance of a multilayer Laue lens (MLL) with 43.4 μm aperture, 4 nm finest zone width and 4.2 mm focal length at 12 keV was characterized with X-rays using ptychography method. The reconstructed probe shows a full-width-at-half-maximum (FWHM) peak size of 11.2 nm. The obtained X-ray wavefront shows excellent agreement with the dynamical calculations, exhibiting aberrations less than 0.3 wave period, which ensures the MLL capable of producing a diffraction-limited focus while offering a sufficient working distance. This achievement opens up opportunities of incorporating a variety of in-situ experiments into ultra high-resolution X-ray microscopy studies.


Journal of Synchrotron Radiation | 2015

Pushing the limits: an instrument for hard X-ray imaging below 20 nm

Evgeny Nazaretski; Kenneth Lauer; Hanfei Yan; Nathalie Bouet; Juan Zhou; Raymond Conley; Xian-Rong Huang; Weihe Xu; M. Lu; K. Gofron; Sebastian Kalbfleisch; Ulrich H. Wagner; Christoph Rau; Yong S. Chu

Hard X-ray microscopy is a prominent tool suitable for nanoscale-resolution non-destructive imaging of various materials used in different areas of science and technology. With an ongoing effort to push the 2D/3D imaging resolution down to 10 nm in the hard X-ray regime, both the fabrication of nano-focusing optics and the stability of the microscope using those optics become extremely challenging. In this work a microscopy system designed and constructed to accommodate multilayer Laue lenses as nanofocusing optics is presented. The developed apparatus has been thoroughly characterized in terms of resolution and stability followed by imaging experiments at a synchrotron facility. Drift rates of ∼2 nm h(-1) accompanied by 13 nm × 33 nm imaging resolution at 11.8 keV are reported.


Optics Express | 2014

Optimization of overlap uniformness for ptychography

Xiaojing Huang; Hanfei Yan; Ross Harder; Y. Hwu; Ian K. Robinson; Yong S. Chu

We demonstrate the advantages of imaging with ptychography scans that follow a Fermat spiral trajectory. This scan pattern provides a more uniform coverage and a higher overlap ratio with the same number of scan points over the same area than the presently used mesh and concentric [13] patterns. Under realistically imperfect measurement conditions, numerical simulations show that the quality of the reconstructed image is improved significantly with a Fermat spiral compared with a concentric scan pattern. The result is confirmed by the performance enhancement with experimental data, especially under low-overlap conditions. These results suggest that the Fermat spiral pattern increases the quality of the reconstructed image and tolerance to data with imperfections.


Review of Scientific Instruments | 2008

Wedged multilayer Laue lens

Ray Conley; Chian Liu; Jun Qian; Cameron M. Kewish; Albert T. Macrander; Hanfei Yan; Hyon Chol Kang; J. Maser; G. Brian Stephenson

A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures.


Review of Scientific Instruments | 2007

Sectioning of multilayers to make a multilayer Laue lens

Hyon Chol Kang; G. Brian Stephenson; Chian Liu; Ray Conley; Ruben Khachatryan; Michael Wieczorek; Albert T. Macrander; Hanfei Yan; Jörg Maser; Jon M. Hiller; Rachel E. Koritala

We report a process to fabricate multilayer Laue lenses (MLLs) by sectioning and thinning multilayer films. This method can produce a linear zone plate structure with a very large ratio of zone depth to width (e.g., >1000), orders of magnitude larger than can be attained with photolithography. Consequently, MLLs are advantageous for efficient nanofocusing of hard x rays. MLL structures prepared by the technique reported here have been tested at an x-ray energy of 19.5 keV, and a diffraction-limited performance was observed. The present article reports the fabrication techniques that were used to make the MLLs.


Scientific Reports | 2013

Quantitative x-ray phase imaging at the nanoscale by multilayer Laue lenses

Hanfei Yan; Yong S. Chu; J. Maser; Evgeny Nazaretski; Jungdae Kim; Hyon Chol Kang; Jeffrey J. Lombardo; Wilson K. S. Chiu

For scanning x-ray microscopy, many attempts have been made to image the phase contrast based on a concept of the beam being deflected by a specimen, the so-called differential phase contrast imaging (DPC). Despite the successful demonstration in a number of representative cases at moderate spatial resolutions, these methods suffer from various limitations that preclude applications of DPC for ultra-high spatial resolution imaging, where the emerging wave field from the focusing optic tends to be significantly more complicated. In this work, we propose a highly robust and generic approach based on a Fourier-shift fitting process and demonstrate quantitative phase imaging of a solid oxide fuel cell (SOFC) anode by multilayer Laue lenses (MLLs). The high sensitivity of the phase to structural and compositional variations makes our technique extremely powerful in correlating the electrode performance with its buried nanoscale interfacial structures that may be invisible to the absorption and fluorescence contrasts.

Collaboration


Dive into the Hanfei Yan's collaboration.

Top Co-Authors

Avatar

Yong S. Chu

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xiaojing Huang

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Evgeny Nazaretski

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Maser

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nathalie Bouet

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mingyuan Ge

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Zhou

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ray Conley

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge