Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanfu Xu is active.

Publication


Featured researches published by Hanfu Xu.


PLOS ONE | 2012

Highly efficient and specific genome editing in silkworm using custom TALENs.

Sanyuan Ma; Shengling Zhang; Feng Wang; Yong Liu; Yuanyuan Liu; Hanfu Xu; Chun Liu; Ying Lin; Ping Zhao; Qingyou Xia

Establishment of efficient genome editing tools is essential for fundamental research, genetic engineering, and gene therapy. Successful construction and application of transcription activator-like effector nucleases (TALENs) in several organisms herald an exciting new era for genome editing. We describe the production of two active TALENs and their successful application in the targeted mutagenesis of silkworm, Bombyx mori, whose genetic manipulation methods are parallel to those of Drosophila and other insects. We will also show that the simultaneous expression of two pairs of TALENs generates heritable large chromosomal deletion. Our results demonstrate that (i) TALENs can be used in silkworm and (ii) heritable large chromosomal deletions can be induced by two pairs of TALENs in whole organisms. The generation and the high frequency of TALENs-induced targeted mutagenesis in silkworm will promote the genetic modification of silkworm and other insect species.


Cell Research | 2011

Ras1 CA overexpression in the posterior silk gland improves silk yield

Li Ma; Hanfu Xu; Jinqi Zhu; Sanyuan Ma; Yan Liu; Rong-Jing Jiang; Qingyou Xia; Sheng Li

Sericulture has been greatly advanced by applying hybrid breeding techniques to the domesticated silkworm, Bombyx mori, but has reached a plateau during the last decades. For the first time, we report improved silk yield in a GAL4/UAS transgenic silkworm. Overexpression of the Ras1CA oncogene specifically in the posterior silk gland improved fibroin production and silk yield by 60%, while increasing food consumption by only 20%. Ras activation by Ras1CA overexpression in the posterior silk gland enhanced phosphorylation levels of Ras downstream effector proteins, up-regulated fibroin mRNA levels, increased total DNA content, and stimulated endoreplication. Moreover, Ras1 activation increased cell and nuclei sizes, enriched subcellular organelles related to protein synthesis, and stimulated ribosome biogenesis for mRNA translation. We conclude that Ras1 activation increases cell size and protein synthesis in the posterior silk gland, leading to silk yield improvement.


Molecular Genetics and Genomics | 2006

Identification and characterization of piggyBac-like elements in the genome of domesticated silkworm, Bombyx mori

Hanfu Xu; Qingyou Xia; Chun Liu; Tingcai Cheng; Ping Zhao; Jun Duan; Xingfu Zha; Shiping Liu

AbstractpiggyBac is a short inverted terminal repeat (ITR) transposable element originally discovered in Trichoplusia ni. It is currently the preferred vector of choice for enhancer trapping, gene discovery and identifying gene function in insects and mammals. Many piggyBac-like sequences have been found in the genomes of phylogenetically species from fungi to mammals. We have identified 98 piggyBac-like sequences (BmPBLE1-98) from the genome data of domesticated silkworm (Bombyx mori) and 17 fragments from expressed sequence tags (ESTs). Most of the BmPBLE1-98 probably exist as fossils. A total of 21 BmPBLEs are flanked by ITRs and TTAA host dinucleotides, of which 5 contain a single ORF, implying that they may still be active. Interestingly, 16 BmPBLEs have CAC/GTG not CCC/GGG as the characteristic residues of ITRs, which is a surprising phenomenon first observed in the piggyBac families. Phylogenetic analysis indicates that many BmPBLEs have a close relation to mammals, especially to Homo sapiens, only a few being grouped with the T. ni piggyBac element. In addition, horizontal transfer was probably involved in the evolution of the piggyBac-like elements between B. mori and Daphnia pulicaria. The analysis of the BmPBLEs will contribute to our understanding of the characteristic of the piggyBac family and application of piggyBac in a wide range of insect species.


Acta Biomaterialia | 2014

Advanced silk material spun by a transgenic silkworm promotes cell proliferation for biomedical application

Feng Wang; Hanfu Xu; Yuancheng Wang; Riyuan Wang; Lin Yuan; Huan Ding; Chunnuan Song; Sanyuan Ma; Zhixin Peng; Zhangchuan Peng; Ping Zhao; Qingyou Xia

Natural silk fiber spun by the silkworm Bombyx mori is widely used not only for textile materials, but also for biofunctional materials. In the present study, we genetically engineered an advanced silk material, named hSFSV, using a transgenic silkworm, in which the recombinant human acidic fibroblast growth factor (hFGF1) protein was specifically synthesized in the middle silk gland and secreted into the sericin layer to surround the silk fiber using our previously optimized sericin1 expression system. The content of the recombinant hFGF1 in the hSFSV silk was estimated to be approximate 0.07% of the cocoon shell weight. The mechanical properties of hSFSV raw silk fiber were enhanced slightly compared to those of the wild-type raw silk fiber, probably due to the presence of the recombinant of hFGF1 in the sericin layer. Remarkably, the hSFSV raw silk significantly stimulated the cell growth and proliferation of NIH/3T3 mouse embryonic fibroblast cells, suggesting that the mitogenic activity of recombinant hFGF1 was well maintained and functioned in the sericin layer of hSFSV raw silk. These results show that the genetically engineered raw silk hSFSV could be used directly as a fine biomedical material for mass application. In addition, the strategy whereby functional recombinant proteins are expressed in the sericin layer of silk might be used to create more genetically engineered silks with various biofunctions and applications.


Transgenic Research | 2013

Cre-mediated targeted gene activation in the middle silk glands of transgenic silkworms (Bombyx mori)

Jianping Duan; Hanfu Xu; Sanyuan Ma; Huizhen Guo; Feng Wang; Ping Zhao; Qingyou Xia

Cre-mediated recombination is widely used to manipulate defined genes spatiotemporally in vivo. The present study evaluated the Cre/loxP system in Bombyx mori by establishing two transgenic lines. One line contained a Cre recombinase gene controlled by a sericin-1 gene (Ser1) promoter. The other line contained a loxP-Stop-loxP-DsRed cassette driven by the same Ser1 promoter. The precise deletion of the Stop fragment was found to be triggered by Cre-mediated site-specific excision, and led to the expression of DsRed fluorescence protein in the middle silk glands of all double-transgenic hybrids. This result was also confirmed by phenotypical analysis. Hence, the current study demonstrated the feasibility of Cre-mediated site-specific recombination in B. mori, and opened a new window for further refining genetic tools in silkworms.


Proceedings of the Royal Society B: Biological Sciences | 2015

Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect.

Hanfu Xu; David A. O'Brochta

Genetic technologies based on transposon-mediated transgenesis along with several recently developed genome-editing technologies have become the preferred methods of choice for genetically manipulating many organisms. The silkworm, Bombyx mori, is a Lepidopteran insect of great economic importance because of its use in silk production and because it is a valuable model insect that has greatly enhanced our understanding of the biology of insects, including many agricultural pests. In the past 10 years, great advances have been achieved in the development of genetic technologies in B. mori, including transposon-based technologies that rely on piggyBac-mediated transgenesis and genome-editing technologies that rely on protein- or RNA-guided modification of chromosomes. The successful development and application of these technologies has not only facilitated a better understanding of B. mori and its use as a silk production system, but also provided valuable experiences that have contributed to the development of similar technologies in non-model insects. This review summarizes the technologies currently available for use in B. mori, their application to the study of gene function and their use in genetically modifying B. mori for biotechnology applications. The challenges, solutions and future prospects associated with the development and application of genetic technologies in B. mori are also discussed.


Transgenic Research | 2014

The advances and perspectives of recombinant protein production in the silk gland of silkworm Bombyx mori

Hanfu Xu

The silk gland of silkworm Bombyx mori, is one of the most important organs that has been fully studied and utilized so far. It contributes finest silk fibers to humankind. The silk gland has excellent ability of synthesizing silk proteins and is a kind tool to produce some useful recombinant proteins, which can be widely used in the biological, biotechnical and pharmaceutical application fields. It’s a very active area to express recombinant proteins using the silk gland as a bioreactor, and great progress has been achieved recently. This review recapitulates the progress of producing recombinant proteins and silk-based biomaterials in the silk gland of silkworm in addition to the construction of expression systems. Current challenges and future trends in the production of valuable recombinant proteins using transgenic silkworms are also discussed.


Biochemical and Biophysical Research Communications | 2013

Novel female-specific trans-spliced and alternative splice forms of dsx in the silkworm Bombyx mori.

Jianping Duan; Hanfu Xu; Feng Wang; Sanyuan Ma; Xingfu Zha; Huizhen Guo; Ping Zhao; Qingyou Xia

The Bombyx mori doublesex gene (Bmdsx) plays an important role in somatic sexual development. Its pre-mRNA splices in a sex-specific manner to generate two female-specific and one male-specific splice forms. The present study investigated six novel dsx variants generated by trans-splicing between female dsx transcripts and two additional novel genes, dsr1 and dsr2. Expression analysis indicated that Bmdsx-dsr1 represented splicing noise, whereas dsr2, which trans-spliced with dsx to generate five variants, regulated the expression of the female-specific B. mori dsx transcript Bmdsx(F)s. We unexpectedly found a novel exon 2n insertion during Bmdsx transcription, which did not influence the validity of the novel protein, BmDSX(F3). Ectopic expression of BmDSX(F3) repressed the pheromone-binding protein gene and the testis-specific gene A2 in males, and activated of the storage protein 1 gene. Our findings suggest that trans-splicing is a novel regulatory function of Bmdsx, which participates in female sexual development by regulating the expression of three BmDSX(F) proteins.


Insect Biochemistry and Molecular Biology | 2013

Genetic marking of sex using a W chromosome-linked transgene.

Sanyuan Ma; Xiaogang Wang; Jitao Fei; Yuanyuan Liu; Jianping Duan; Feng Wang; Hanfu Xu; Ping Zhao; Qingyou Xia

Many species belonging to the order Lepidoptera are major pests in agriculture and arboriculture. The sterile insect technique (SIT) is an eco-friendly and highly efficient genetically targeted pest management approach. In many cases, it is preferable to release only sterile males in an SIT program, and efficient sexing strategies are crucial to the successful large-scale implementation of SIT. In the present study, we established 160 transgenic silkworm (Bombyx mori) lines to test the possibility of genetic sexing using a W chromosome-linked transgene, which is thought to be the best sexing strategy for lepidopteran species. One transgenic line with a female-specific expression pattern of reporter gene was obtained. The expression level of the W-linked transgene was comparable with autosomal insertions and was stable for 17 continuous generations. Molecular characterization showed this line contained a single copy of the reporter gene on the W chromosome, and the integration site was TTAG in contig W-BAC-522N19-C9. The feasibility of using a W chromosome-linked transgene demonstrated here and the possible improvements discussed will provide valuable information for other lepidopteran pests. The novel W chromosome-linked transgenic line established in this study will serve as an important resource for fundamental research with the silkworm B. mori.


Molecular Reproduction and Development | 2014

Ectopic expression of the male BmDSX affects formation of the chitin plate in female Bombyx mori

Jianping Duan; Hanfu Xu; Shangyuan Ma; Huizheng Guo; Feng Wang; Liying Zhang; Xingfu Zha; Ping Zhao; Qingyou Xia

Mating structures are involved in successful copulation, intromission, and/or insemination. These structures enable tight coupling between external genitalia of two sexes. During Bombyx mori copulation, the double harpagones in the external genitalia of males clasp the female chitin plate, which is derived from the larval eighth abdominal segment; abnormal development of the female chitin plate affects copulation. We report that ERK phosphorylation (p‐ERK) and expression of Abdominal‐B (Abd‐B) in the posterior abdomen of the female adult is lower than in the male. Ectopic expression of the male‐specific spliced form of B. mori doublesex (BmdsxM) in females, however, up‐regulates Abd‐B and spitz (spi) expression, increasing EGFR signaling activity, and thus forming an abnormal chitin plate and reduced female copulation. These findings indicate that Bmdsx affects the development of the eighth abdominal segment by regulating the activity of EGFR signaling and the expression of Abd‐B, resulting in an extra eighth abdominal segment (A8) in males versus the loss of this segment in adult females. Mol. Reprod. Dev. 2014.

Collaboration


Dive into the Hanfu Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Yuan

Southwest University

View shared research outputs
Top Co-Authors

Avatar

Chun Liu

Southwest University

View shared research outputs
Researchain Logo
Decentralizing Knowledge