Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hang Cao is active.

Publication


Featured researches published by Hang Cao.


Cellular Physiology and Biochemistry | 2016

Triggering of Suicidal Erythrocyte Death by Bexarotene.

Abdulla Al Mamun Bhuyan; Rosi Bissinger; Hang Cao; Florian Lang

Background/Aims: The retinoid X receptor agonist bexarotene is utilized for the treatment of cutaneous T-cell lymphoma and is effective in several further malignancies. The substance counteracts tumor growth in part by triggering suicidal death or apoptosis of tumor cells. Side effects of bexarotene treatment include anemia. Theoretically, bexarotene induced anemia could be secondary to stimulation of suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling potentially stimulating eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), induction of oxidative stress, increase of ceramide abundance, as well as activation of staurosporine sensitive protein kinase C, SB203580 sensitive p38 kinase, D4476 sensitive casein kinase 1, and zVAD sensitive caspases. The present study explored, whether bexarotene induces eryptosis and, if so, whether its effect involves Ca2+ entry, oxidative stress, ceramide, kinases and/or caspases. Methods: Flow cytometry was employed to quantify phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) abundance from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was estimated from hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to bexarotene (≥ 0.4 µg/ml) significantly increased the percentage of annexin-V-binding cells without significantly modifying forward scatter. Bexarotene significantly increased Fluo3-fluorescence and DCFDA fluorescence. Bexarotene tended to increase ceramide abundance, an effect, however, not reaching statistical significance. The effect of bexarotene on annexin-V-binding was significantly blunted by removal of extracellular Ca2+ and by addition of D4476 (10 µM), but not by addition of staurosporine (1 µM), SB203580 (2 µM), or zVAD (10 µM). Conclusions: Bexarotene triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry, oxidative stress, and activation of D4476 sensitive casein kinase.


Cellular Physiology and Biochemistry | 2017

Inhibitory Effect of Afatinib on Platelet Activation and Apoptosis

Hang Cao; Abdulla Al Mamun Bhuyan; Anja T. Umbach; Rosi Bissinger; Meinrad Gawaz; Florian Lang

Background/Aims: The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor afatinib is used for the treatment of several malignancies. Afatinib is at least partially effective by triggering apoptosis of tumor cells. Platelets may similarly undergo apoptosis, which is characterized by caspase 3 activation, cell shrinkage and phosphatidylserine translocation. However, an effect of afatinib on platelets has never been reported. The present study explored whether treatment of platelets with afatinib modifies platelet activation and apoptosis in the absence and presence of platelet activators thrombin or collagen related peptide (CRP). Methods: Platelets isolated from wild-type mice were exposed for 30 minutes to afatinib (18 µg/ml) without or with subsequent treatment with thrombin (0.005 U/ml or 0.01 U/ml) or CRP (2 µg/ml or 5 µg/ml). Flow cytometry was employed to estimate Orai1 abundance at the platelet surface with specific antibodies, cytosolic Ca2+-activity ([Ca2+]i) from Fluo-3 fluorescence, platelet degranulation from P-selectin abundance, integrin activation from αIIbβ3 integrin abundance, caspase activity utilizing an Active Caspase-3 Staining kit, phosphatidylserine abundance from annexin-V-binding, platelet volume from forward scatter and aggregation utilizing staining with CD9-APC and CD9-PE. Results: In the absence of thrombin and CRP, the administration of afatinib (18 µg/ml) slightly, but significantly, increased [Ca2+]i and annexin-V-binding, but did not significantly modify Orai1 abundance, P-selectin abundance, activated αIIbβ3 integrin, cell volume, caspase activity and aggregation. Exposure of platelets to 0.005 U/ml or 0.01 U/ml thrombin or 2 µg/ml or 5 µg/ ml CRP was followed by a significant increase of Orai1 abundance, increase of [Ca2+]i, P-selectin abundance, αIIbβ3 integrin activity, annexin-V-binding, caspase activity, and aggregation, as well as a significant decrease of forward scatter, all effects significantly blunted (thrombin) or virtually abolished (CRP) by afatinib. Conclusions: Afatinib is a powerful inhibitor of platelet activation, platelet apoptosis and platelet aggregation.


Cellular Physiology and Biochemistry | 2017

Triggering of Suicidal Erythrocyte Death by Exemestane

Abdulla Al Mamun Bhuyan; Rosi Bissinger; Hang Cao; Florian Lang

Background/Aims: The steroidal aromatase inactivator exemestane blocks estrogen biosynthesis and is thus employed for the prevention and treatment of breast cancer. Exemestane is in part effective by stimulation of suicidal cell death or apoptosis. Side effects of exemestane treatment include anemia. At least in theory, exemestane induced anemia could be secondary to stimulation of suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the stimulation of eryptosis includes increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, several kinases and caspases. The present study explored, whether exemestane is able to trigger eryptosis and, if so, to shed some light on the signaling involved. Methods: Flow cytometry was employed to quantify phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) abundance from DCF fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to exemestane (≥ 10 µg/ml) significantly increased the percentage of annexin-V-binding cells without significantly modifying forward scatter. Exemestane significantly increased Fluo3-fluorescence (10 and 20, but not 40 µg/ml), DCF fluorescence (40 µg/ml), and ceramide abundance (40 µg/ml). The effect of exemestane (40 µg/ml) on annexin-V-binding was significantly blunted by antioxidant N-acetylcysteine (1mM), but was not significantly modified by removal or increase of extracellular Ca2+, by p38 kinase inhibitor SB203580 (2 µM), casein kinase inhibitor D4476 (10 µM) and caspase inhibitor zVAD (10 µM). Conclusions: Exemestane triggers phospholipid scrambling of the erythrocyte cell membrane, an effect paralleled by enhanced [Ca2+]i, oxidative stress, and increased ceramide abundance.


Cellular Physiology and Biochemistry | 2017

Effect of Bexarotene on Platelet Activation and Apoptosis

Hang Cao; Rosi Bissinger; Anja T. Umbach; Meinrad Gawaz; Florian Lang

Background/Aims: The retinoid X receptor (RXRs) stimulator Bexarotene ((4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl] benzoic acid) is used for the treatment of several malignancies. Bexarotene is at least in part effective by stimulation of apoptosis of tumor cells. Moreover, Bexarotene triggers eryptosis, the suicidal death of erythrocytes. Similar to erythrocytes, blood platelets lack nuclei but are nevertheless able to enter an apoptosis-like phenotype, characterized by caspase activation, cell shrinkage and cell membrane scrambling with phospha-tidylserine translocation to the cell surface. Platelet apoptosis is triggered by increase of cytosolic Ca2+-activity ([Ca2+]i), which further leads to degranulation and integrin activation. Platelet activation and apoptosis could be elicited by thrombin or collagen related peptide (CRP). The present study explored whether treatment of platelets with bexarotene modifies platelet activation and apoptosis following exposure to thrombin or CRP. Methods: Platelets isolated from wild-type mice were exposed for 30 minutes to bexarotene (6 µg/ml) without or with an additional treatment with thrombin (0.01 U/ml) or CRP (2 µg/ml or 5 µg/ml). Flow cytometry was employed to estimate cytosolic Ca2+-activity ([Ca2+]i) from Fluo-3 fluorescence, platelet degranulation from P-selectin abundance, integrin activation from αIIbβ3 integrin abundance, caspase activity utilizing an Active Caspase-3 Staining kit, phosphatidylserine abundance from annexin-V-binding, and relative platelet volume from forward scatter. Results: In the absence of thrombin or CRP, the administration of bexarotene slightly but significantly increased [Ca2+]i, but did not significantly modify P-selectin abundance, activated αIIbβ3 integrin, annexin-V-binding, cell volume, or caspase activity. Exposure of platelets to thrombin or CRP was followed by significant increase of [Ca2+]i, P-selectin abundance, active αIIbβ3 integrin, annexin-V-binding, and caspase activity. The effects of thrombin on [Ca2+]i, annexin-V-binding, cell volume, and caspase activity as well as the effects of CRP on [Ca2+]i, P-selectin abundance, activated αIIbβ3 integrin, annexin-V-binding, cell volume, and caspase activity were significantly augmented in the presence of bexarotene. Conclusions: Bexarotene sensitizes blood platelets for thrombin and/or CRP induced activation and apoptosis.


Cellular Physiology and Biochemistry | 2017

Triggering of Eryptosis, the Suicidal Erythrocyte Death by Mammalian Target of Rapamycin (mTOR) inhibitor Temsirolimus

Abdulla Al Mamun Bhuyan; Hang Cao; Florian Lang

Background/Aims: The mammalian target of rapamycin (mTOR) inhibitor temsirolimus is utilized for the treatment of malignancy. Temsirolimus is at least in part effective by triggering suicidal tumor cell death. The most common side effect of temsirolimus treatment is anemia. At least in theory, the anemia following temsirolimus treatment could result from stimulation of eryptosis, the suicidal erythrocyte death. Hallmarks of eryptosis include cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the orchestration of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, as well as activation of staurosporine and chelerythrine sensitive protein kinase C, SB203580 sensitive p38 kinase, D4476 sensitive casein kinase 1, and zVAD sensitive caspases. The purpose of the present study was to test whether temsirolimus influences eryptosis and, if so, to shed light on the signaling involved. Methods: Flow cytometry was employed to estimate cell volume from forward scatter, phosphatidylserine exposure at the cell surface from annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) abundance from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was determined from hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to temsirolimus (5 – 20 µg/ml) significantly decreased forward scatter and significantly increased the percentage of annexin-V-binding cells. Temsirolimus significantly increased Fluo3-fluorescence, DCFDA fluorescence and ceramide abundance at the erythrocyte surface. The effect of temsirolimus on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+ and by addition of staurosporine (1 µM) or chelerythrine (10 µM) but not significantly modified by addition of SB203580 (2 µM), D4476 (10 µM), or zVAD (10 µM). Chelerythrine (10 µM) further significantly blunted the effect of temsirolimus on DCFDA fluorescence but not ceramide formation. Removal of extracellular Ca2+ had no effect on temsirolimus induced ROS formation or ceramide abundance. Conclusions: Temsirolimus triggers eryptosis with cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry, oxidative stress, ceramide and activation of staurosporine/Chelerythrine sensitive kinase(s).


Cellular Physiology and Biochemistry | 2017

Inhibition of Erythrocyte Cell Membrane Scrambling by ASP3026

Abdulla Al Mamun Bhuyan; Rosi Bissinger; Hang Cao; Florian Lang

Background/Aims: The anaplastic lymphoma kinase (ALK) inhibitor ASP3026 is in clinical development for the treatment of ALK expressing non-small cell lung carcinoma (NSCLC). ASP3026 is in part effective by inducing apoptosis of tumor cells. Erythrocytes lack mitochondria and nuclei, key organelles in the execution of apoptosis, but are nevertheless able to enter suicidal death or eryptosis, which is characterized by cell membrane scrambling with phosphatidylserine translocation to the cell surface and by cell shrinkage. Eryptosis is triggered by cell stress, such as energy depletion, hyperosmotic shock, oxidative stress and excessive increase of cytosolic Ca2+ activity ([Ca2+]i). The present study explored, whether ASP3026 impacts on eryptosis. Methods: Human erythrocytes have been exposed to energy depletion (glucose withdrawal for 48 hours), oxidative stress (addition of 0.3 mM tert-butylhydroperoxide [tBOOH] for 50 min) or Ca2+ loading with Ca2+ ionophore ionomycin (1 µM for 60 min) in absence and presence of ASP3026 (1-4 µg/ml). Flow cytometry was employed to quantify phosphatidylserine exposure at the cell surface from annexin-V-binding, and cell volume from forward scatter. Results: Treatment with ASP3026 alone did not significantly modify annexin-V-binding or forward scatter. Energy depletion, oxidative stress and ionomycin, all markedly and significantly increased the percentage of annexin-V-binding erythrocytes, and decreased the forward scatter. ASP3026 significantly blunted the effect of energy depletion and oxidative stress, but not of ionomycin on annexin-V-binding. ASP3026 did not significantly influence the effect of any maneuver on forward scatter. Conclusions: ASP3026 is a novel inhibitor of erythrocyte cell membrane scrambling following energy depletion and oxidative stress.


Cellular Physiology and Biochemistry | 2017

Simvastatin, a Novel Stimulator of Eryptosis, the Suicidal Erythrocyte Death

Abdulla Al Mamun Bhuyan; Sigrid Nüßle; Hang Cao; Shaqiu Zhang; Florian Lang

Background/Aims: The 3-hydroxy-3-methyl-glutaryl-Coenzyme A (HMG-CoA) reductase inhibitor simvastatin has been shown to trigger apoptosis of several cell types. The substance has thus been proposed as an additional treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death. Hallmarks of eryptosis include cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the extracellular face of the erythrocyte cell membrane. Signaling contributing to stimulation of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), induction of oxidative stress, increase of ceramide abundance, and activation of SB203580-sensitive p38 kinase. The present study explored, whether simvastatin induces eryptosis and aimed to shed light on cellular mechanisms involved. Methods: Flow cytometry was employed to quantify phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) abundance from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was estimated from hemoglobin concentration in the supernatant. Results: A 48 h exposure of human erythrocytes to simvastatin (1 µg/ml) significantly decreased the forward scatter, significantly augmented the percentage of annexin-V-binding cells, significantly increased Fluo3-fluorescence, and significantly enhanced DCFDA fluorescence. Simvastatin tended to increase ceramide abundance, an effect, however, escaping statistical significance. The effect of simvastatin on annexin-V-binding was significantly blunted by removal of extracellular Ca2+ and by addition of SB203580 (2 µM). Conclusions: Simvastatin stimulates eryptosis, an effect at least in part due to Ca2+ entry, oxidative stress, and p38 kinase.


bioRxiv | 2018

Gut bacterial metabolite Urolithin A (UA) mitigates Ca2+ 1 entry in T cells by regulating miR-10a-5p

Shaqiu Zhang; Tamer Maghout; Hang Cao; Lisann Pelzl; Madhuri Salkere; Anchun Cheng; Florian Lang; Yogesh Singh

The gut microbiota influences several biological functions including immune response. Inflammatory bowel disease is favourably influenced by consumption of several dietary natural plant products such as pomegranate, walnuts and berries containing polyphenolic compounds such as ellagitannins and ellagic acid. The gut microbiota metabolises ellagic acid leading to formation of bioactive urolithins A, B, C and D. Urolithin A (UA) is the most active and effective gut metabolite and acts as a potent anti-inflammatory and anti-oxidant agent. However, how gut metabolite UA affects the function of immune cells remained incompletely understood. T cell proliferation is stimulated by store operated Ca2+ entry (SOCE) resulting from stimulation of Orai1 by STIM1/STIM2. We show here that treatment of murine CD4+ T cells with UA (10 µM, 3 days) significantly blunted SOCE in CD4+ T cells, an effect paralleled by significant downregulation of Orai1 and STIM1/2 transcript levels and protein abundance. UA treatment further increased miR-10a-5p abundance in CD4+ T cells in a dose dependent fashion. Overexpression of miR-10a-5p significantly decreased STIM1/2 and Orai1 mRNA and protein levels as well as SOCE in CD4+ T cells. UA further decreased CD4+ T cell proliferation. Thus, bacterial metabolite UA up-regulates miR-10a-5p thus interfering with Orai1/STIM1/STIM2 expression, store operated Ca2+ entry and proliferation of murine CD4+ T cells.


Physiological Reports | 2018

Heterotrimeric G‐protein subunit Gαi2 contributes to agonist‐sensitive apoptosis and degranulation in murine platelets

Hang Cao; Syed M. Qadri; Elisabeth Lang; Lisann Pelzl; Anja T. Umbach; Veronika Leiss; Lutz Birnbaumer; Bernd Nürnberg; Burkert Pieske; Jakob Voelkl; Meinrad Gawaz; Rosi Bissinger; Florian Lang

Gαi2, a heterotrimeric G‐protein subunit, regulates various cell functions including ion channel activity, cell differentiation, proliferation and apoptosis. Platelet‐expressed Gαi2 is decisive for the extent of tissue injury following ischemia/reperfusion. However, it is not known whether Gαi2 plays a role in the regulation of platelet apoptosis, which is characterized by caspase activation, cell shrinkage and cell membrane scrambling with phosphatidylserine (PS) translocation to the platelet surface. Stimulators of platelet apoptosis include thrombin and collagen‐related peptide (CoRP), which are further known to enhance degranulation and activation of αIIbβ3‐integrin and caspases. Using FACS analysis, we examined the impact of agonist treatment on activation and apoptosis in platelets drawn from mice lacking Gαi2 and their wild‐type (WT) littermates. As a result, treatment with either thrombin (0.01 U/mL) or CoRP (2 μg/mL or 5 μg/mL) significantly upregulated PS‐exposure and significantly decreased forward scatter, reflecting cell size, in both genotypes. Exposure to CoRP triggered a significant increase in active caspase 3, ceramide formation, surface P‐selectin, and αIIbβ3‐integrin activation. These molecular alterations were significantly less pronounced in Gαi2‐deficient platelets as compared to WT platelets. In conclusion, our data highlight a previously unreported role of Gαi2 signaling in governing platelet activation and apoptosis.


Cellular Physiology and Biochemistry | 2018

Inhibition of Collagen Related Peptide Induced Platelet Activation and Apoptosis by Ceritinib

Hang Cao; Anja T. Umbach; Rosi Bissinger; Meinrad Gawaz; Florian Lang

Background/Aims: The anaplastic lymphoma (tyrosine) kinase (ALK) inhibitor ceritinib triggers apoptosis of tumor cells and eryptosis of erythrocytes. Blood platelets may similarly enter a state resembling apoptosis, which could be triggered by activation with collagen related peptide (CRP). CRP-induced platelet apoptosis is characterized by cell membrane scrambling with phosphatidylserine exposure to the platelet surface and cell shrinkage, preceded by externalization of Ca2+ channel Orai1, increase of cytosolic Ca2+-activity ([Ca2+]i), formation of reactive oxygen species (ROS), and caspase activation. The present study explored whether ceritinib triggers platelet apoptosis and/or modifies the CRP induced apoptosis. Methods: Platelets isolated from wild-type mice were exposed for 30 minutes to ceritinib (1.5 µg/ml) without or with 2.5 – 15 min pretreatment with CRP (2 µg/ml or 5 µg/ml). Flow cytometry was employed to estimate cytosolic Ca2+-activity ([Ca2+]i) from Fluo-3 fluorescence, ROS abundance from 2’,7’-dichlorodihydrofluorescein diacetate fluorescence, platelet degranulation from P-selectin abundance, integrin activation from αIIbβ3 integrin abundance, caspase activity utilizing an Active Caspase-3 Staining kit, phosphatidylserine abundance from annexin-V-binding, platelet volume from forward scatter and aggregation utilizing staining with CD9-APC and CD9-PE. Results: In the absence of CRP, ceritinib slightly, but significantly decreased [Ca2+]i without significantly modifying the other measured parameters. CRP significantly increased [Ca2+]i, ROS abundance, P-selectin abundance, activated αIIbβ3 integrin, annexin-V-binding, caspase activity as well as aggregation and decreased cell volume, all effects significantly blunted in the presence of ceritinib. Conclusions: The present observations uncover a novel, unexpected effect of ceritinib, i.e. inhibition of CRP-induced platelet activation and apoptosis.

Collaboration


Dive into the Hang Cao's collaboration.

Top Co-Authors

Avatar

Florian Lang

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisann Pelzl

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Itishri Sahu

University of Hyderabad

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Basma Sukkar

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge