Hang-zi Chen
Xiamen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hang-zi Chen.
Nature Chemical Biology | 2008
Yan-yan Zhan; Xiping Du; Hang-zi Chen; Jingjing Liu; Bi-xing Zhao; Danhong Huang; Gui-deng Li; Qingyan Xu; Mingqing Zhang; Bart C. Weimer; Dong Chen; Zhe Cheng; Lianru Zhang; Qinxi Li; Shaowei Li; Zhonghui Zheng; Siyang Song; Yaojian Huang; Zhiyun Ye; Wenjin Su; Sheng-Cai Lin; Yuemao Shen; Qiao Wu
Nuclear orphan receptor Nur77 has important roles in many biological processes. However, a physiological ligand for Nur77 has not been identified. Here, we report that the octaketide cytosporone B (Csn-B) is a naturally occurring agonist for Nur77. Csn-B specifically binds to the ligand-binding domain of Nur77 and stimulates Nur77-dependent transactivational activity towards target genes including Nr4a1 (Nur77) itself, which contains multiple consensus response elements allowing positive autoregulation in a Csn-B-dependent manner. Csn-B also elevates blood glucose levels in fasting C57 mice, an effect that is accompanied by induction of multiple genes involved in gluconeogenesis. These biological effects were not observed in Nur77-null (Nr4a1-/-) mice, which indicates that Csn-B regulates gluconeogenesis through Nur77. Moreover, Csn-B induced apoptosis and retarded xenograft tumor growth by inducing Nur77 expression, translocating Nur77 to mitochondria to cause cytochrome c release. Thus, Csn-B may represent a promising therapeutic drug for cancers and hypoglycemia, and it may also be useful as a reagent to increase understanding of Nur77 biological function.
Nature Chemical Biology | 2014
Wei-jia Wang; Yuan Wang; Hang-zi Chen; Yong-zhen Xing; Feng-wei Li; Qian Zhang; Bo Zhou; Hongkui Zhang; Jie Zhang; Xue-li Bian; Li Li; Yuan Liu; Bi-xing Zhao; Yan Chen; Rong Wu; An-zhong Li; Lu-ming Yao; Ping Chen; Yi Zhang; Xu-yang Tian; Friedrich Beermann; Mian Wu; Jiahuai Han; Pei-Qiang Huang; Tianwei Lin; Qiao Wu
Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death.
The EMBO Journal | 2006
Bi-xing Zhao; Hang-zi Chen; Na-zi Lei; Gui-deng Li; Wen-xiu Zhao; Yan-yan Zhan; Bo Liu; Sheng-Cai Lin; Qiao Wu
MDM2 is an oncoprotein whose transforming potential is activated by overexpression. The expression level of MDM2 is negatively regulated by orphan receptor TR3 that mainly acts as a transcriptional factor to regulate gene expression. However, the underlying mechanism is largely unclear. Here, we present the first evidence that inhibition of TR3 on MDM2 is mediated by p53. We found that TR3 directly interacts with p53 but not MDM2, and such interaction is critical for TR3 to inhibit MDM2 expression. TR3 downregulates p53 transcriptional activity by blocking its acetylation, leading to a decrease on the transcription level of MDM2. Furthermore, TR3 binding to p53 obstructs its ubiquitination and degradation induced by MDM2, resulting in the MDM2 ubiquitination and degradation. In addition, TR3 could enhance p53‐mediated apoptosis induced by UV irradiation. Taken together, our findings demonstrate that p53 mediates the suppression of TR3 on MDM2 at both transcriptional and post‐transcriptional level and suggest TR3 as a potential target to develop new anticancer agents that restrict MDM2‐induced tumor progression.
Cancer Research | 2010
Jingjing Liu; Huini Zeng; Lianru Zhang; Yan-yan Zhan; Yan Chen; Yuan Wang; Juan Wang; Shao-hua Xiang; Wen-Jun Liu; Wei-jia Wang; Hang-zi Chen; Yuemao Shen; Wenjin Su; Pei-Qiang Huang; Hongkui Zhang; Qiao Wu
Nur77 is a steroid orphan receptor that plays a critical role in regulating proliferation, differentiation, and apoptosis, including acting as a switch for Bcl-2 function. We previously reported that the octaketide cytosporone B (Csn-B) is a natural agonist for Nur77. In this study, we synthesized a series of Csn-B analogues and performed a structure-activity analysis that suggested criteria for the development of a unique pharmacophore to activate Nur77. The components of the pharmacophore necessary for binding Nur77 included the benzene ring, the phenolic hydroxyl group, and the acyl chain of the Csn-B scaffold, whereas the key feature for activating the biological function of Nur77 was the ester group. Csn-B analogues that bound Nur77 tightly not only stimulated its transactivation activity but also initiated mitochondrial apoptosis by means of novel cross-talk between Nur77 and BRE, an antiapoptotic protein regulated at the transcriptional level. Notably, the derivative n-amyl 2-[3,5-dihydroxy-2-(1-nonanoyl)phenyl]acetate exhibited greater antitumor activity in vivo than its parent compounds, highlighting particular interest in this compound. Our findings describe a pathway for rational design of Csn-B-derived Nur77 agonists as a new class of potent and effective antitumor agents.
Nature Chemical Biology | 2012
Yan-yan Zhan; Yan Chen; Qian Zhang; Jia-Jia Zhuang; Min Tian; Hang-zi Chen; Lianru Zhang; Hongkui Zhang; Jian-ping He; Wei-jia Wang; Rong Wu; Yuan Wang; Chunfang Shi; Kai Yang; An-zhong Li; Yong-zhen Xin; Terytty Yang Li; James Y. Yang; Zhonghui Zheng; Chun-dong Yu; Sheng-Cai Lin; Chawnshang Chang; Pei-Qiang Huang; Tianwei Lin; Qiao Wu
Liver kinase B1 (LKB1) has important roles in governing energy homeostasis by regulating the activity of the energy sensor kinase AMP-activated protein kinase (AMPK). The regulation of LKB1 function, however, is still poorly understood. Here we demonstrate that the orphan nuclear receptor Nur77 binds and sequesters LKB1 in the nucleus, thereby attenuating AMPK activation. This Nur77 function is antagonized by the chemical compound ethyl 2-[2,3,4-trimethoxy-6-(1-octanoyl)phenyl]acetate (TMPA), which interacts with Nur77 with high affinity and at specific sites. TMPA binding of Nur77 results in the release and shuttling of LKB1 to the cytoplasm to phosphorylate AMPKα. Moreover, TMPA effectively reduces blood glucose and alleviates insulin resistance in type II db/db and high-fat diet- and streptozotocin-induced diabetic mice but not in diabetic littermates with the Nur77 gene knocked out. This study attains a mechanistic understanding of the regulation of LKB1-AMPK axis and implicates Nur77 as a new and amenable target for the design and development of therapeutics to treat metabolic diseases.
Gut | 2012
Hang-zi Chen; Qing-Feng Liu; Li Li; Wei-jia Wang; Lu-ming Yao; Meng Yang; Bo Liu; Wei Chen; Yan-yan Zhan; Mingqing Zhang; Jian-chun Cai; Zhonghui Zheng; Sheng-Cai Lin; Bo-An Li; Qiao Wu
Aims Wnt signalling is involved in cellular homeostasis and development. Dysregulation of the Wnt signalling pathway has been linked to colorectal cancer. The orphan nuclear receptor TR3 plays important roles in proliferation and apoptosis. In this study, we investigated how TR3 suppresses intestinal tumorigenesis by regulating Wnt signalling. Methods Intestinal polyps were quantified in Apcmin/+, Apcmin/+/TR3−/− and Apcmin/+/villin-TR3 mice. Wnt signalling activity was evaluated by assessing β-galactosidase activity in a BAT-Gal reporter strain. The TR3 agonist cytosporone B was used to evaluate the role of TR3 in intestinal tumorigenesis. Crosstalk between TR3 and β-catenin/TCF4 was analysed by molecular methods in colorectal cancer cells. The phosphorylation of TR3 by glycogen synthase kinase (GSK) 3β and the correlation between GSK3β activity and TR3 phosphorylation were evaluated in clinical samples and colorectal cancer cells. Results TR3 was found to significantly suppress Wnt signalling activity and the proliferation of intestinal epithelial cells. Apcmin/+/TR3−/− mice developed more intestinal polyps than Apcmin/+/TR3+/+ mice, whereas either transgenic overexpression of TR3 in the intestine or treatment with cytosporone B in Apcmin/+ mice significantly decreased intestinal tumour number. Mechanistically, TR3 disrupted the association of β-catenin and TCF4 on chromatin and facilitated the recruitment of transcriptional co-repressors to the promoters of Wnt signalling target genes. However, TR3 was phosphorylated by GSK3β in most clinical colorectal cancers, which attenuated the inhibitory activity of TR3 towards Wnt signalling. Conclusions TR3 is a negative regulator of Wnt signalling and thus significantly suppresses intestinal tumorigenesis in Apcmin/+ mice. This inhibitory effect of TR3 may be paradoxically overcome through phosphorylation by GSK3β in clinical colorectal cancers.
Nature Chemical Biology | 2015
Li Li; Yuan Liu; Hang-zi Chen; Feng-wei Li; Jianfeng Wu; Hongkui Zhang; Jian-ping He; Yong-zhen Xing; Yan Chen; Wei-jia Wang; Xu-yang Tian; An-zhong Li; Qian Zhang; Pei-Qiang Huang; Jiahuai Han; Tianwei Lin; Qiao Wu
Sepsis, a hyperinflammatory response that can result in multiple organ dysfunctions, is a leading cause of mortality from infection. Here, we show that orphan nuclear receptor Nur77 (also known as TR3) can enhance resistance to lipopolysaccharide (LPS)-induced sepsis in mice by inhibiting NF-κB activity and suppressing aberrant cytokine production. Nur77 directly associates with p65 to block its binding to the κB element. However, this function of Nur77 is countered by the LPS-activated p38α phosphorylation of Nur77. Dampening the interaction between Nur77 and p38α would favor Nur77 suppression of the hyperinflammatory response. A compound, n-pentyl 2-[3,5-dihydroxy-2-(1-nonanoyl) phenyl]acetate, screened from a Nur77-biased library, blocked the Nur77-p38α interaction by targeting the ligand-binding domain of Nur77 and restored the suppression of the hyperinflammatory response through Nur77 inhibition of NF-κB. This study associates the nuclear receptor with immune homeostasis and implicates a new therapeutic strategy to treat hyperinflammatory responses by targeting a p38α substrate to modulate p38α-regulated functions.
Carcinogenesis | 2008
Hang-zi Chen; Bi-xing Zhao; Wen-xiu Zhao; Li Li; Bing Zhang; Qiao Wu
Acutely transforming retrovirus AKT8 in rodent T cell lymphoma (Akt) phosphorylates and regulates the function of many cellular proteins involved in processes such as metabolism, apoptosis and proliferation. However, the precise mechanisms by which Akt promotes cell survival and inhibits apoptosis have been characterized in part only. TR3, an orphan receptor, functions as a transcription factor that can both positively or negatively regulate gene expression. We have reported previously that the translocation of TR3 from the nucleus to the mitochondria can elicit a proapoptotic effect in gastric cancer cells. In our present study, we demonstrate that Akt phosphorylates cytoplasmic TR3 through its physical interaction with the N-terminus of TR3. When coexpressed with Akt, TR3 mitochondrial targeting was blocked and this protein adopted a diffuse expression pattern in the cytoplasm. Moreover, Akt displayed an ability to disrupt the interaction of TR3 with Bcl-2, which is thought to be a critical requirement for mitochondrial TR3 to elicit apoptosis. Consistently, insulin was also found to induce the phosphorylation of TR3 and abolish 12-O-tetradecanoylphorbol-13-acetate-induced mitochondrial localization, which was dependent upon the activation of the phophatidylinositol-3-OH-kinase-Akt signaling pathway. Taken together, our current data demonstrate a unique role for Akt in inhibiting TR3 functions that are not related to transcriptional activity but that correlate with the regulation of its mitochondrial association. This may represent a novel signal pathway by which Akt exerts its antiapoptotic effects in gastric cancer cells, i.e. by regulating the phosphorylation and redistribution of orphan receptors.
Embo Molecular Medicine | 2013
Ronghao Wang; Jian-ping He; Mao-Long Su; Jie Luo; Ming Xu; Xiao-dan Du; Hang-zi Chen; Wei-jia Wang; Yuan Wang; Nan Zhang; Bi-xing Zhao; Wen-xiu Zhao; Zhong-Gui Shan; Jiahuai Han; Chawnshang Chang; Qiao Wu
Angiotensin II (AngII) induces cardiac hypertrophy and increases the expression of TR3. To determine whether TR3 is involved in the regulation of the pathological cardiac hypertrophy induced by AngII, we established mouse and rat hypertrophy models using chronic AngII administration. Our results reveal that a deficiency of TR3 in mice or the knockdown of TR3 in the left ventricle of rats attenuated AngII‐induced cardiac hypertrophy compared with the respective controls. A mechanistic analysis demonstrates that the TR3‐mediated activation of mTORC1 is associated with AngII‐induced cardiac hypertrophy. TR3 was shown to form a trimer with the TSC1/TSC2 complex that specifically promoted TSC2 degradation via a proteasome/ubiquitination pathway. As a result, mTORC1, but not mTORC2, was activated; this was accompanied by increased protein synthesis, enhanced production of reactive oxygen species and enlarged cell size, thereby resulting in cardiac hypertrophy. This study demonstrates that TR3 positively regulates cardiac hypertrophy by influencing the effect of AngII on the mTOR pathway. The elimination or reduction of TR3 may reduce cardiac hypertrophy; therefore, TR3 is a potential target for clinical therapy.
Oncogene | 2012
Hang-zi Chen; Li Li; Wang Wj; Xiping Du; Wen Q; Jian-ping He; Bi-xing Zhao; Gui-deng Li; Zhou W; Yankai Xia; Qiaoyun Yang; Choy Leong Hew; Yih-Cherng Liou; Qiao Wu
Pin1 regulates a subset of phosphoproteins by isomerizing phospho-Ser/Thr-Pro motifs via a ‘post-phosphorylation’ mechanism. Here, we characterize TR3 as a novel Pin1 substrate, and the mitogenic function of TR3 depends on Pin1-induced isomerization. There are at least three phospho-Ser-Pro motifs on TR3 that bind to Pin1. The Ser95-Pro motif of TR3 is the key site through which Pin1 enhances TR3 stability by retarding its degradation. Pin1 can also catalyze TR3 through phospho-Ser431-Pro motif, which is phosphorylated by extracellular signal-regulated kinase 2 (ERK2), resulting in enhanced TR3 transactivation. Furthermore, Pin1 not only facilitates TR3 targeting to the promoter of cyclin D2, a novel downstream target of TR3, but also promotes TR3 to recruit p300, thereby inducing cell proliferation. Importantly, we found that Pin1 is indispensable for TR3 to promote tumor growth both in vitro and in vivo. Our study thus suggests that Pin1 has an important role in cell proliferation by isomerizing TR3.