Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hangeun Kim is active.

Publication


Featured researches published by Hangeun Kim.


Journal of Virology | 2011

ISG56 and IFITM1 proteins inhibit hepatitis C virus replication

Amit Raychoudhuri; Shubham Shrivastava; Robert Steele; Hangeun Kim; Ranjit Ray; Ratna B. Ray

ABSTRACT Hepatitis C virus (HCV) often leads to persistent infection. Interferon (IFN) and IFN-stimulated genes (ISGs) are amplified during HCV infection but fail to eliminate virus from the liver in a large number of infected patients. We have observed previously that HCV infection induces IFN-β production in immortalized human hepatocytes (IHH) as early as 24 h after infection, although virus replication is not inhibited. To gain insights on possible countermeasures of virus for the suppression of host antiviral response, the cellular transcriptional profiles of ISGs were examined after various treatments of IHH. The majority of ISGs were upregulated in IFN-treated IHH from the level for mock-treated cells. However, the comparison of ISG expression in IFN-treated IHH and IFN-pretreated, HCV genotype 2a-infected IHH indicated that virus infection suppresses the upregulation of a subset of effector molecules, including ISG56 and IFITM1. Similar results were observed for HCV-infected Huh7 cells. Subsequent study suggested that the exogenous expression of ISG56 or IFITM1 inhibits HCV replication in IHH or Huh7 cells, and the knockdown of these genes enhanced HCV replication. Further characterization revealed that the overexpression of these ISGs does not block HCV pseudotype entry into Huh7 cells. Taken together, our results demonstrated that ISG56 and IFITM1 serve as important molecules to restrict HCV infection, and they may have implications in the development of therapeutic modalities.


Journal of Virology | 2012

Hepatitis C Virus Proteins Inhibit C3 Complement Production

Budhaditya Mazumdar; Hangeun Kim; Keith Meyer; Sandip K. Bose; Adrian M. Di Bisceglie; Ratna B. Ray; Ranjit Ray

ABSTRACT The third component of human complement (C3) plays a central role in innate immune function as its activation is required to trigger classical as well as alternative complement pathways. In this study, we have observed that sera from patients chronically infected with hepatitis C virus (HCV) displayed significantly lower C3 levels than sera from healthy individuals. Liver biopsy specimens from the same patients also exhibited lower C3 mRNA expression than liver tissues from healthy donors. C3 mRNA level was reduced in hepatocytes upon infection with cell culture-grown HCV genotype 1a or 2a in vitro. Further analysis suggested that HCV core protein displayed a weak repression of C3 promoter activity by downregulating the transcription factor farnesoid X receptor (FXR). On the other hand, HCV NS5A protein strongly downregulated C3 promoter activity at the basal level or in the presence of interleukin-1β (IL-1β) as an inducer. In addition, the expression of the transcription factor CAAT/enhancer binding protein beta (C/EBP-β), which binds to the IL-1/IL-6 response element in the C3 promoter, was inhibited in liver biopsy specimens. Furthermore, expression of C/EBP-β was reduced in hepatocytes infected with cell culture-grown HCV, as well as in hepatocytes transfected with the NS5A genomic region of HCV. Together, these results underscore the role of HCV NS5A protein in impairing innate immune function.


Journal of Virology | 2014

Forkhead Box Transcription Factor Regulation and Lipid Accumulation by Hepatitis C Virus

Sandip K. Bose; Hangeun Kim; Keith Meyer; Nathan E. Wolins; Nicholas O. Davidson; Ranjit Ray

ABSTRACT We have previously shown that hepatitis C virus (HCV) infection modulates the expression of forkhead box transcription factors, including FoxO1 and FoxA2, which play key roles in gluconeogenesis and β-oxidation of fatty acid, respectively. The aim of the present study was to determine the role of forkhead box transcription factors in modulating lipid metabolism. HCV infection or core protein expression alone in transfected Huh7.5 cells increased expression of sterol regulatory element binding protein 1c (SREBP-1c) and its downstream target, fatty acid synthase (FASN), which are key proteins involved in lipid synthesis. Knockdown of FoxO1 by small interfering RNA in HCV-infected cells significantly decreased SREBP-1c and FASN expression. Further, HCV infection or core protein expression in Huh7.5 cells significantly decreased the expression of medium-chain acyl coenzyme A dehydrogenase (MCAD) and short-chain acyl coenzyme A dehydrogenase (SCAD), involved in the regulation of β-oxidation of fatty acids. Ectopic expression of FoxA2 in HCV-infected cells rescued the expression of MCAD and SCAD. Oil red O and neutral lipid staining indicated that HCV infection significantly increases lipid accumulation compared to that in the mock-infected control. This was further verified by the increased expression of perilipin-2 and decreased activity of hormone-sensitive lipase (HSL) in HCV-infected hepatocytes, implying increased accumulation of neutral lipids. Knockdown of FoxO1 and ectopic expression of FoxA2 significantly decreased HCV replication. Taken together, these results suggest that HCV modulates forkhead box transcription factors which together increase lipid accumulation and promote viral replication. IMPORTANCE Hepatic steatosis is a frequent complication associated with chronic HCV infection. Its presence is a key prognostic indicator associated with the progression to hepatic fibrosis and hepatocellular carcinoma. Several mechanisms have been proposed to account for the development of steatosis and fatty liver during HCV infection. We observed that HCV infection increases expression of both SREBP-1c and FASN. Further investigation suggested that the expression of SREBP-1c and FASN is controlled by the transcription factor FoxO1 during HCV infection. In addition, HCV infection significantly decreased both MCAD and SCAD expression, which is controlled by FoxA2. HCV infection also increased lipid droplet accumulation, increased perilipin-2 expression, and decreased HSL activity. Thus, knockdown of FoxO1 (decreased lipogenesis) and overexpression of FoxA2 (increased β-oxidation) resulted in a significant disruption of the platform and, hence, a decrease in HCV genome replication. Thus, targeting of FoxO1 and FoxA2 might be useful in developing a therapeutic approach against HCV infection.


Journal of Virology | 2013

Hepatitis C Virus Suppresses C9 Complement Synthesis and Impairs Membrane Attack Complex Function

Hangeun Kim; Keith Meyer; Adrian M. Di Bisceglie; Ranjit Ray

ABSTRACT Hepatitis C virus (HCV) proteins inhibit complement component expression, which may attenuate immunity against infection. In this study, we examined whether HCV regulates the membrane attack complex (MAC) via complement component C9. MAC is composed of C5b to C9 (C5b-9) and mediates cell lysis of invaded pathogens. Liver biopsy specimens from chronically HCV-infected patients exhibited a lower level of C9 mRNA expression than liver biopsy specimens from unrelated disease or healthy control human liver RNA. Hepatocytes infected with cell culture-grown HCV or expressing HCV core protein also displayed significant repression of C9 mRNA and protein levels. Promoter analysis suggested that the T cell factor-4 (TCF-4E) transcription factor is responsible for HCV core-mediated C9 promoter regulation. Sera from chronically HCV-infected patients displayed a lower level of C5b-9 and a reduced antimicrobial effect on model organisms compared to unrelated patient sera or sera from healthy volunteers. Together, these results for C9 regulation by HCV core protein coupled with functional impairment of the membrane attack complex underscore HCV-mediated attenuation of immune mechanisms.


Journal of Virology | 2013

Hepatitis C virus infection upregulates CD55 expression on the hepatocyte surface and promotes association with virus particles

Budhaditya Mazumdar; Hangeun Kim; Keith Meyer; Sandip K. Bose; Adrian M. Di Bisceglie; Ratna B. Ray; Michael S. Diamond; John P. Atkinson; Ranjit Ray

ABSTRACT CD55 limits excessive complement activation on the host cell surface by accelerating the decay of C3 convertases. In this study, we observed that hepatitis C virus (HCV) infection of hepatocytes or HCV core protein expression in transfected hepatocytes upregulated CD55 expression at the mRNA and protein levels. Further analysis suggested that the HCV core protein or full-length (FL) genome enhanced CD55 promoter activity in a luciferase-based assay, which was further augmented in the presence of interleukin-6. Mutation of the CREB or SP-1 binding site on the CD55 promoter impaired HCV core protein-mediated upregulation of CD55. HCV-infected or core protein-transfected Huh7.5 cells displayed greater viability in the presence of CD81 and CD55 antibodies and complement. Biochemical analysis revealed that CD55 was associated with cell culture-grown HCV after purification by sucrose density gradient ultracentrifugation. Consistent with this, a polyclonal antibody to CD55 captured cell culture-grown HCV. Blocking antibodies against CD55 or virus envelope glycoproteins in the presence of normal human serum as a source of complement inhibited HCV infection. The inhibition was enhanced in the presence of both the antibodies and serum complement. Collectively, these results suggest that HCV induces and associates with a negative regulator of the complement pathway, a likely mechanism for immune evasion.


Molecules and Cells | 2013

Lipoteichoic Acid Isolated from Lactobacillus plantarum Suppresses LPS-Mediated Atherosclerotic Plaque Inflammation

Joo Yun Kim; Hangeun Kim; Bong Jun Jung; Na-Ra Kim; Jeong Euy Park; Dae Kyun Chung

Chronic inflammation plays an important role in atherogenesis. Experimental studies have demonstrated the accumulation of monocytes/macrophages in atherosclerotic plaques caused by inflammation. Here, we report the inhibitory effects of lipoteichoic acid (LTA) from Lactobacillus plantarum (pLTA) on atherosclerotic inflammation. pLTA inhibited the production of proinflammatory cytokines and nitric oxide in lipopolysaccharide (LPS)-stimulated cells and alleviated THP-1 cell adhesion to HUVEC by down-regulation of adhesion molecules such as intracellular adhesion molecule-1 (ICAM-I), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. The inhibitory effect of pLTA was mediated by inhibition of NF-κB and activation of MAP kinases. Inhibition of monocyte/macrophage infiltration to the arterial lumen was shown in pLTA-injected ApoE−/− mice, which was concurrent with inhibition of MMP-9 and preservation of CD31 production. The antiinflammatory effect mediated by pLTA decreased expression of atherosclerotic markers such as COX-2, Bax, and HSP27 and also cell surface receptors such as TLR4 and CCR7. Together, these results underscore the role of pLTA in suppressing atherosclerotic plaque inflammation and will help in identifying targets with therapeutic potential against pathogen-mediated atherogenesis.


Journal of Virology | 2014

HEPATITIS C VIRUS IMPAIRS NATURAL KILLER CELL MEDIATED AUGMENTATION OF COMPLEMENT SYNTHESIS

Hangeun Kim; Sandip K. Bose; Keith Meyer; Ranjit Ray

ABSTRACT Natural killer (NK) cells and the complement system play critical roles in the first line of defense against pathogens. The synthesis of complement components C4 and C3 is transcriptionally downregulated by hepatitis C virus (HCV) core and NS5A proteins, and this negative regulation is apparent in chronically HCV-infected patients. In this study, we have examined the potential contribution of an NK cell line as a model in regulating complement synthesis. Coculture of NK cells (NK3.3) with human hepatoma cells (Huh7.5) expressing HCV core or NS5A protein led to a significant increase in C4 and C3 complement synthesis via enhanced specific transcription factors. Reestablishment of complement protein expression was found to be mediated by direct interaction between NKG2D on NK cells and the hepatocyte protein major histocompatibility complex class I-related chains A and B (MICA/B) and not to be associated with specific cytokine signaling events. On the other hand, C4 and C3 synthesis remained impaired in a coculture of NK cells and Huh7.5 cells infected with cell culture-grown HCV. The association between these two cell types through NKG2D and MICA/B was examined further, with MICA/B expression in HCV-infected hepatocytes found to remain inhibited during coculture. Further experiments revealed that the HCV NS2 and NS5B proteins are responsible for the HCV-associated decrease in MICA/B. These results suggest that HCV disables a key receptor ligand in infected hepatoma cells, thereby inhibiting the ability of infected cells to respond to stimuli from NK cells to positively regulate complement synthesis. IMPORTANCE The complement system contributes to the protection of the host from virus infection. However, the involvement of complement in viral hepatitis has not been well documented. Whether NK cells affect complement component expression in HCV-infected hepatocytes remains unknown. Here, we have shown how HCV subverts the ability of NK cells to positively mediate complement protein expression.


Journal of Virology | 2012

Hepatitis C Virus-Mediated Inhibition of Cathepsin S Increases Invariant-Chain Expression on Hepatocyte Surface

Hangeun Kim; Budhaditya Mazumdar; Sandip K. Bose; Keith Meyer; Adrian M. Di Bisceglie; Daniel F. Hoft; Ranjit Ray

ABSTRACT Hepatocytes are the main source of hepatitis C virus (HCV) replication and contain the maximum viral load in an infected person. Chronic HCV infection is characterized by weak cellular immune responses to viral proteins. Cathepsin S is a lysosomal cysteine protease and controls HLA-DR–antigen complex presentation through the degradation of the invariant chain. In this study, we examined the effect of HCV proteins on cathepsin S expression and found it to be markedly decreased in dendritic cells (DCs) exposed to HCV or in hepatocytes expressing HCV proteins. The downregulation of cathepsin S was mediated by HCV core and NS5A proteins involving inhibition of the transcription factors interferon regulatory factor 1 (IRF-1) and upstream stimulatory factor 1 (USF-1) in gamma interferon (IFN-γ)-treated hepatocytes. Inhibition of cathepsin S by HCV proteins increased cell surface expression of the invariant chain. In addition, hepatocytes stably transfected with HCV core or NS5A inhibited HLA-DR expression. Together, these results suggested that HCV has an inhibitory role on cathepsin S-mediated major histocompatibility complex (MHC) class II maturation, which may contribute to weak immunogenicity of viral antigens in chronically infected humans.


Molecules and Cells | 2012

Lactobacillus plantarum lipoteichoic acid alleviates TNF-α-induced inflammation in the HT-29 intestinal epithelial cell line

Hangeun Kim; Bong Jun Jung; Ji Hae Jung; Joo Yun Kim; Sung Kyun Chung; Dae Kyun Chung

We recently observed that lipoteichoic acid (LTA) isolated from Lactobacillus plantarum inhibited endotoxin-mediated inflammation of the immune cells and septic shock in a mouse model. Here, we examined the inhibitory role of L. plantarum LTA (pLTA) on the inflammatory responses of intestinal epithelial cells (IEC). The human colon cell line, HT-29, increased interleukin (IL)-8 expression in response to recombinant human tumor necrosis factor (TNF)-alpha, but not in response to bacterial ligands and interferon (IFN)-gamma. TNF-α also increased the produc-tion of inducible nitric oxide synthase (iNOS), nitric oxide (NO), and intercellular adhesion molecule 1 (ICAM-1) through activation of p38 mitogen-activated protein kinase (MAPK) from HT-29 cells. However, the inflammatory response of HT-29 on TNF-α stimulation was significantly inhibited by pLTA treatment. This pLTA-mediated inhibition accompanied the inhibition of nuclear factor (NF)-kappa B and MAPKs. Our data suggest that pLTA regulates cytokine-mediated immune responses and may be a good candidate for maintaining intestinal homeostasis against excessive inflammation.


PLOS ONE | 2014

Inhibition of c3 convertase activity by hepatitis C virus as an additional lesion in the regulation of complement components.

Hangeun Kim; Keith Meyer; Adrian M. Di Bisceglie; Ranjit Ray

We have previously reported that in vitro HCV infection of cells of hepatocyte origin attenuates complement system at multiple steps, and attenuation also occurs in chronically HCV infected liver, irrespective of the disease stage. However, none of these regulations alone completely impaired complement pathways. Modulation of the upstream proteins involved in proteolytic processing of the complement cascade prior to convertase formation is critical in promoting the function of the complement system in response to infection. Here, we examined the regulation of C2 complement expression in hepatoma cells infected in vitro with cell culture grown virus, and validated our observations using randomly selected chronically HCV infected patient liver biopsy specimens. C2 mRNA expression was significantly inhibited, and classical C3 convertase (C4b2a) decreased. In separate experiments for C3 convertase function, C3b deposition onto bacterial membrane was reduced using HCV infected patient sera as compared to uninfected control, suggesting impaired C3 convertase. Further, iC3b level, a proteolytically inactive form of C3b, was lower in HCV infected patient sera, reflecting impairment of both C3 convertase and Factor I activity. The expression level of Factor I was significantly reduced in HCV infected liver biopsy specimens, while Factor H level remained unchanged or enhanced. Together, these results suggested that inhibition of C3 convertase activity is an additional cumulative effect for attenuation of complement system adopted by HCV for weakening innate immune response.

Collaboration


Dive into the Hangeun Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ranjit Ray

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar

Keith Meyer

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge