Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hangxiang Wang is active.

Publication


Featured researches published by Hangxiang Wang.


ChemBioChem | 2009

Recent Progress in Strategies for the Creation of Protein-Based Fluorescent Biosensors

Hangxiang Wang; Eiji Nakata; Itaru Hamachi

The creation of novel bioanalytical tools for the detection and monitoring of a range of important target substances and biological events in vivo and in vitro is a great challenge in chemical biology and biotechnology. Protein‐based fluorescent biosensors—integrated devices that convert a molecular‐recognition event to a fluorescent signal—have recently emerged as a powerful tool. As the recognition units various proteins that can specifically recognize and bind a variety of molecules of biological significance with high affinity are employed. For the transducer, fluorescent proteins, such as green fluorescent protein (GFP) or synthetic fluorophores, are mostly adopted. Recent progress in protein engineering and organic synthesis allows us to manipulate proteins genetically and/or chemically, and a library of such protein scaffolds has been significantly expanded by genome projects. In this review, we briefly describe the recent progress of protein‐based fluorescent biosensors on the basis of their platform and construction strategy, which are primarily divided into the genetically encoded fluorescent biosensors and chemically constructed biosensors.


Cancer Research | 2013

RXRα Inhibits the NRF2-ARE Signaling Pathway through a Direct Interaction with the Neh7 Domain of NRF2

Hangxiang Wang; Liu K; Geng M; Gao P; Wu X; Hai Y; Yong Li; Lin Luo; John D. Hayes; Xiu Jun Wang; Xiuwen Tang

The transcription factor NRF2 (NFE2L2) is a pivotal activator of genes encoding cytoprotective and detoxifying enzymes that limit the action of cytotoxic therapies in cancer. NRF2 acts by binding antioxidant response elements (ARE) in its target genes, but there is relatively limited knowledge about how it is negatively controlled. Here, we report that retinoic X receptor alpha (RXRα) is a hitherto unrecognized repressor of NRF2. RNAi-mediated knockdown of RXRα increased basal ARE-driven gene expression and induction of ARE-driven genes by the NRF2 activator tert-butylhydroquinone (tBHQ). Conversely, overexpression of RXRα decreased ARE-driven gene expression. Biochemical investigations showed that RXRα interacts physically with NRF2 in cancer cells and in murine small intestine and liver tissues. Furthermore, RXRα bound to ARE sequences in the promoters of NRF2-regulated genes. RXRα loading onto AREs was concomitant with the presence of NRF2, supporting the hypothesis that a direct interaction between the two proteins on gene promoters accounts for the antagonism of ARE-driven gene expression. Mutation analyses revealed that interaction between the two transcription factors involves the DNA-binding domain of RXRα and a region comprising amino acids 209-316 in human NRF2 that had not been defined functionally, but that we now designate as the NRF2-ECH homology (Neh) 7 domain. In non-small cell lung cancer cells where NRF2 levels are elevated, RXRα expression downregulated NRF2 and sensitized cells to the cytotoxic effects of therapeutic drugs. In summary, our findings show that RXRα diminishes cytoprotection by NRF2 by binding directly to the newly defined Neh7 domain in NRF2.


Journal of the American Chemical Society | 2011

Chemical Cell-Surface Receptor Engineering Using Affinity-Guided, Multivalent Organocatalysts

Hangxiang Wang; Yoichiro Koshi; Daishiro Minato; Hiroshi Nonaka; Shigeki Kiyonaka; Yasuo Mori; Shinya Tsukiji; Itaru Hamachi

Catalysts hold promise as tools for chemical protein modification. However, the application of catalysts or catalyst-mediated reactions to proteins has only recently begun to be addressed, mainly in in vitro systems. By radically improving the affinity-guided DMAP (4-dimethylaminopyridine) (AGD) catalysts that we previously reported (Koshi, Y.; Nakata, E.; Miyagawa, M.; Tsukiji, S.; Ogawa, T.; Hamachi, I. J. Am. Chem. Soc. 2008, 130, 245.), here we have developed a new organocatalyst-based approach that allows specific chemical acylation of a receptor protein on the surface of live cells. The catalysts consist of a set of multivalent DMAP groups (the acyl transfer catalyst) fused to a ligand specific to the target protein. It was clearly demonstrated by in vitro experiments that the catalyst multivalency enables remarkable enhancement of protein acylation efficiency in the labeling of three different proteins: congerin II, a Src homology 2 (SH2) domain, and FKBP12. Using a multivalent AGD catalyst and optimized acyl donors containing a chosen probe, we successfully achieved selective chemical labeling of bradykinin B(2) receptor (B(2)R), a G-protein coupled receptor, on the live cell-surface. Furthermore, the present tool allowed us to construct a membrane protein (B(2)R)-based fluorescent biosensor, the fluorescence of which is enhanced (tuned on) in response to the antagonist ligand binding. The biosensor should be applicable to rapid and quantitative screening and assay of potent drug candidates in the cellular context. The design concept of the affinity-guided, multivalent catalysts should facilitate further development of diverse catalyst-based protein modification tools, providing new opportunities for organic chemistry in biological research.


Journal of the American Chemical Society | 2009

Quenched ligand-directed tosylate reagents for one-step construction of turn-on fluorescent biosensors.

Shinya Tsukiji; Hangxiang Wang; Masayoshi Miyagawa; Tomonori Tamura; Yousuke Takaoka; Itaru Hamachi

Semisynthetic fluorescent biosensors consisting of a protein framework and a synthetic fluorophore are powerful analytical tools for specific detection of biologically relevant molecules. We report herein a novel method that allows for the construction of turn-on fluorescent semisynthetic biosensors in a one-step manner. The strategy is based on the ligand-directed tosyl (LDT) chemistry, a new type of affinity-guided protein labeling scheme which can site-specifically introduce synthetic probes to the surface of proteins with concomitant release of the affinity ligands. Novel quenched ligand-directed tosylate (Q-LDT) reagents were designed by connecting an organic dye to a conjugate of a protein ligand and a fluorescence quencher through a tosyl linker. The Q-LDT-mediated labeling directly converts a natural protein to a fluorescently labeled protein that remains noncovalently complexed with the cleaved ligand-tethered quencher. The fluorescence of this labeled protein is initially quenched and only in the presence of specific analytes is the fluorescence enhanced (turned on) due to the expulsion of the ligand-quencher fragment. Using a single labeling step, this approach was successfully applied to carbonic anhydrase II (CAII) and a Src homology 2 (SH2) domain to generate turn-on fluorescent biosensors toward CAII inhibitors and phosphotyrosine peptides, respectively. Detailed investigations revealed that the obtained biosensors exhibit their natural ligand selectivity. The high target-specificity of the LDT chemistry also allowed us to prepare the SH2 domain-based biosensor not only in a purified form but also in a bacterial cell lysate. These results demonstrate the utility of the Q-LDT-based approach to expand the applications of semisynthetic biosensors.


Organic Letters | 2014

Rhodium-Catalyzed Transannulation of N-Sulfonyl-1,2,3-triazoles and Epoxides: Regioselective Synthesis of Substituted 3,4-Dihydro-2H-1,4-oxazines

Xueji Ma; Shanfei Pan; Hangxiang Wang; Wanzhi Chen

Rhodium-catalyzed transannulation of 1,2,3-triazoles and ring-opening reactions of epoxides is described. A number of 3,4-dihydro-2H-1,4-oxazines are obtained in moderate yields probably involving generation of α-imino rhodium(II) carbene species.


Angewandte Chemie | 2014

Structure-Based Rational Design of Prodrugs To Enable Their Combination with Polymeric Nanoparticle Delivery Platforms for Enhanced Antitumor Efficacy

Hangxiang Wang; Haiyang Xie; Jiaping Wu; Xuyong Wei; Lin Zhou; Xiao Xu; Shusen Zheng

Drug-loaded nanoparticles (NPs) are of particular interest for efficient cancer therapy due to their improved drug delivery and therapeutic index in various types of cancer. However, the encapsulation of many chemotherapeutics into delivery NPs is often hampered by their unfavorable physicochemical properties. Here, we employed a drug reform strategy to construct a small library of SN-38 (7-ethyl-10-hydroxycamptothecin)-derived prodrugs, in which the phenolate group was modified with a variety of hydrophobic moieties. This esterification fine-tuned the polarity of the SN-38 molecule and enhanced the lipophilicity of the formed prodrugs, thereby inducing their self-assembly into biodegradable poly(ethylene glycol)-block-poly(d,l-lactic acid) (PEG-PLA) nanoparticulate structures. Our strategy combining the rational engineering of prodrugs with the pre-eminent features of conventionally used polymeric materials should open new avenues for designing more potent drug delivery systems as a therapeutic modality.


ACS Applied Materials & Interfaces | 2016

iRGD-decorated polymeric nanoparticles for the efficient delivery of vandetanib to hepatocellular carcinoma: preparation and, in vitro and in vivo evaluation.

Jianguo Wang; Hangxiang Wang; Jie Li; Zhikun Liu; Haiyang Xie; Xuyong Wei; Di Lu; Runzhou Zhuang; Xiao Xu; Shusen Zheng

Molecularly targeted agents that are designed to target specific lesions have been proven effective as clinical cancer therapies; however, most currently available therapeutic agents are poorly water-soluble and require oral administration, thereby resulting in low bioavailability and a high risk of side effects due to dose intensification. The rational engineering of systemically injectable medicines that encapsulate such therapeutic payloads may revolutionize anticancer therapies and remains an under-explored area of drug development. Here, the injectable delivery of a nanomedicine complexed with an oral multitargeted kinase inhibitor, vandetanib (vanib), was explored using polymeric nanoparticles (NPs) to achieve the selective accumulation of drug payloads within tumor lesions. To demonstrate this concept, we used biodegradable amphiphilic block copolymer poly(ethylene glycol)-block-poly(D,xa0L-lactic acid) (PEG-PLA) to nanoprecipitate this potent agent to form water-soluble NPs that are suitable for intravenous administration. NP-vanib induced cytotoxic activity by inhibiting the angiogenetic events mediated by VEGFR and EGFR kinases in tested cancer cells and inhibited the growth, tube formation and metastasis of HUVECs. The intravenously injection of NP-vanib into mice bearing HCC BEL-7402 xenografts more effectively inhibited the tumor than the oral administration of vanib. In addition, due to the modular design of these NPs, the drug-loaded particles can easily be decorated with iRGD, a tumor-homing and -penetrating peptide motif, which further improved the in vivo performance of these vanib-loaded NPs. Our results demonstrate that reformulating targeted therapeutic agents in NPs permits their systemic administration and thus significantly improves the potency of currently available, orally delivered agents.


Journal of Organic Chemistry | 2014

N-heterocyclic carbene-stabilized palladium complexes as organometallic catalysts for bioorthogonal cross-coupling reactions.

Xueji Ma; Hangxiang Wang; Wanzhi Chen

A small library of water-soluble N-heterocyclic carbene (NHC)-stabilized palladium complexes was prepared and applied for cross-couplings of biomolecules under mild conditions in water. Pd-NHC complexes bearing hydrophilic groups were demonstrated to be efficient catalysts for the Suzuki-Miyaura coupling of various unnatural amino acids and proteins bearing p-iodophenyl functional groups. We further utilized this catalytic system for the rapid bioorthogonal labeling of proteins on the surfaces of mammalian cells. These results demonstrated that NHC-stabilized metal complexes have potential utility in cellular systems.


International Journal of Pharmaceutics | 2014

Deoxycholic acid-modified chitooligosaccharide/mPEG-PDLLA mixed micelles loaded with paclitaxel for enhanced antitumor efficacy

Chengjun Jiang; Hangxiang Wang; Xiaomin Zhang; Zhibin Sun; Feng Wang; Jun Cheng; Haiyang Xie; Bo Yu; Lin Zhou

Poly(ethylene glycol) (PEG) as a block in polymeric micelles can prolong circulation life and reduce systemic clearance but decrease the cellular uptake. To overcome this limitation, a mixed micelle composed of deoxycholic acid-modified chitooligosaccharide (COS-DOCA) and methoxy poly(ethylene glycol)-polylactide copolymer (mPEG-PDLLA) was designed to load paclitaxel (PTX). The PTX-loaded mixed micelles was prepared by nanoprecipitation method with high drug-loading efficiency of 8.03% and encapsulation efficiency of 97.09% as well as small size (∼40 nm) and narrow size distribution. COS-DOCA/mPEG-PDLLA mixed micelles exhibited the sustained release property. Due to the positive charge and bioadhesive property of COS-DOCA, the cellular uptake of PTX in mixed micelles was higher in cancer cells but lower in macrophage cells compared to the mPEG-PDLLA micelles. The systemic toxicity of PTX in mixed micelles was much lower than Taxol using zebrafish as a toxicological model. Furthermore, the PTX-loaded COS-DOCA/mPEG-PDLLA mixed micelles can prolong the blood circulation time of PTX and enhance the antitumor efficacy in A549 lung xenograft model. Our findings indicate that COS-DOCA/mPEG-PDLLA mixed micelles could be a potential vehicle for enhanced delivery of anticancer drugs.


International Journal of Pharmaceutics | 2016

Integrating a novel SN38 prodrug into the PEGylated liposomal system as a robust platform for efficient cancer therapy in solid tumors.

Tao Fang; Yuehan Dong; Xiaomin Zhang; Ke Xie; Li Lin; Hangxiang Wang

Liposomal nanoassemblies have been used extensively as carriers for the delivery of both lipophilic and hydrophilic drugs. They represent a mature, versatile technology with considerable potential for improving the pharmacokinetics of drugs. However, the formulation of many chemotherapeutics into liposome systems has posed a significant challenge due to their incompatible physicochemical properties, as was the case with camptothecin-based chemotherapeutics. Here, we present a rational paradigm of potent chemotherapeutics that were reconstructed and subsequently integrated into liposomal nanoassemblies. Using SN38 (7-ethyl-10-hydroxy camptothecin) as a model drug, a lipophilic prodrug 1 (designated as LA-SN38) was constructed by tethering the linoleic acid (LA) moiety via esterification, which was further facilitated to form liposomal nanoparticles (LipoNP) through supramolecular nanoassembly. The resulting 1-loaded LipoNP exhibited sustained drug release kinetics and decreased cellular uptake by macrophage cells. Uptake by tumor cells was enhanced relative to our previous supramolecular nanoparticles (SNP 1), which were derived from the self-assembling prodrug 1. Notably, LipoNP outperformed SNP 1 in terms of pharmacokinetics and in vivo therapeutic efficacy in both human BEL-7402 hepatocellular carcinoma (HCC) and HCT-116 colorectal cancer-derived xenograft mouse models. These results were likely due to the improved systemic circulation and preferential accumulation of nanodrugs in tumors. Hence, our results suggest that the combination of liposomal delivery platforms with rational prodrug engineering may emerge as a promising approach for the effective and safe delivery of anticancer chemotherapeutics.

Collaboration


Dive into the Hangxiang Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge