Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hani Al Haddad is active.

Publication


Featured researches published by Hani Al Haddad.


International Journal of Sports Physiology and Performance | 2014

Monitoring Accelerations With GPS in Football: Time to Slow Down?

Martin Buchheit; Hani Al Haddad; Ben M. Simpson; Dino Palazzi; Pitre C. Bourdon; Valter Di Salvo; Alberto Mendez-Villanueva

The aims of the current study were to examine the magnitude of between-GPS-models differences in commonly reported running-based measures in football, examine between-units variability, and assess the effect of software updates on these measures. Fifty identical-brand GPS units (15 SPI-proX and 35 SPIproX2, 15 Hz, GPSports, Canberra, Australia) were attached to a custom-made plastic sled towed by a player performing simulated match running activities. GPS data collected during training sessions over 4 wk from 4 professional football players (N = 53 files) were also analyzed before and after 2 manufacturer-supplied software updates. There were substantial differences between the different models (eg, standardized difference for the number of acceleration >4 m/s2 = 2.1; 90% confidence limits [1.4, 2.7], with 100% chance of a true difference). Between-units variations ranged from 1% (maximal speed) to 56% (number of deceleration >4 m/s2). Some GPS units measured 2-6 times more acceleration/deceleration occurrences than others. Software updates did not substantially affect the distance covered at different speeds or peak speed reached, but 1 of the updates led to large and small decreases in the occurrence of accelerations (-1.24; -1.32, -1.15) and decelerations (-0.45; -0.48, -0.41), respectively. Practitioners are advised to apply care when comparing data collected with different models or units or when updating their software. The metrics of accelerations and decelerations show the most variability in GPS monitoring and must be interpreted cautiously.


Journal of Strength and Conditioning Research | 2009

Cardiorespiratory and cardiac autonomic responses to 30-15 intermittent fitness test in team sport players.

Martin Buchheit; Hani Al Haddad; Grégoire P. Millet; Pierre Marie Leprêtre; Michael Newton; Said Ahmaidi

Buchheit, M, Al Haddad, H, Millet GP, Lepretre, PM, Newton, M, and Ahmaidi, S. Cardiorespiratory and cardiac autonomic responses to 30-15 Intermittent Fitness Test in team sport players. J Strength Cond Res 23(1): 93-100, 2009-The 30-15 Intermittent Fitness Test (30-15IFT) is an attractive alternative to classic continuous incremental field tests for defining a reference velocity for interval training prescription in team sport athletes. The aim of the present study was to compare cardiorespiratory and autonomic responses to 30-15IFT with those observed during a standard continuous test (CT). In 20 team sport players (20.9 ± 2.2 years), cardiopulmonary parameters were measured during exercise and for 10 minutes after both tests. Final running velocity, peak lactate ([La]peak), and rating of perceived exertion (RPE) were also measured. Parasympathetic function was assessed during the postexercise recovery phase via heart rate (HR) recovery time constant (HRRτ) and HR variability (HRV) vagal-related indices. At exhaustion, no difference was observed in peak oxygen uptake (&OV0312;o2peak), respiratory exchange ratio, HR, or RPE between 30-15IFT and CT. In contrast, 30-15IFT led to significantly higher minute ventilation, [La]peak, and final velocity than CT (p < 0.05 for all parameters). All maximal cardiorespiratory variables observed during both tests were moderately to well correlated (e.g., r = 0.76, p = 0.001 for &OV0312;o2peak). Regarding ventilatory thresholds (VThs), all cardiorespiratory measurements were similar and well correlated between the 2 tests. Parasympathetic function was lower after 30-15IFT than after CT, as indicated by significantly longer HHRτ (81.9 ± 18.2 vs. 60.5 ± 19.5 for 30-15IFT and CT, respectively, p < 0.001) and lower HRV vagal-related indices (i.e., the root mean square of successive R-R intervals differences [rMSSD]: 4.1 ± 2.4 and 7.0 ± 4.9 milliseconds, p < 0.05). In conclusion, the 30-15IFT is accurate for assessing VThs and &OV0312;o2peak, but it alters postexercise parasympathetic function more than a continuous incremental protocol.


Autonomic Neuroscience: Basic and Clinical | 2010

Effect of cold or thermoneutral water immersion on post-exercise heart rate recovery and heart rate variability indices

Hani Al Haddad; Paul B. Laursen; Didier Chollet; Frédéric Lemaître; Said Ahmaidi; Martin Buchheit

This study aimed to investigate the effect of cold and thermoneutral water immersion on post-exercise parasympathetic reactivation, inferred from heart rate (HR) recovery (HRR) and HR variability (HRV) indices. Twelve men performed, on three separate occasions, an intermittent exercise bout (all-out 30-s Wingate test, 5 min seated recovery, followed by 5 min of submaximal running exercise), randomly followed by 5 min of passive (seated) recovery under either cold (CWI), thermoneutral water immersion (TWI) or control (CON) conditions. HRR indices (e.g., heart beats recovered in the first minute after exercise cessation, HRR(60)(s)) and vagal-related HRV indices (i.e., natural logarithm of the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals (Ln rMSSD)) were calculated for the three recovery conditions. HRR(60)(s) was faster in water immersion compared with CON conditions [30+/-9 beats min(-)(1) for CON vs. 43+/- 10 beats min(-)(1) for TWI (P=0.003) and 40+/-13 beats min(-)(1) for CWI (P=0.017)], while no difference was found between CWI and TWI (P=0.763). Ln rMSSD was higher in CWI (2.32+/-0.67 ms) compared with CON (1.98+/-0.74 ms, P=0.05) and TWI (2.01+/-0.61 ms, P=0.08; aES=1.07) conditions, with no difference between CON and TWI (P=0.964). Water immersion is a simple and efficient means of immediately triggering post-exercise parasympathetic activity, with colder immersion temperatures likely to be more effective at increasing parasympathetic activity.


Journal of Sports Sciences | 2014

Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players

Martin Buchheit; Pierre Samozino; Jonathan A. Glynn; Ben Simpson Michael; Hani Al Haddad; Alberto Mendez-Villanueva; Jean Benoit Morin

Abstract The aim of the present study was to examine, in highly trained young soccer players, the mechanical horizontal determinants of acceleration (Acc) and maximal sprinting speed (MSS). Eighty-six players (14.1 ± 2.4 year) performed a 40-m sprint to assess Acc and MSS. Speed was measured with a 100-Hz radar, and theoretical maximal velocity (V0), horizontal force (F0) and horizontal power (Pmax) were calculated. Within each age group, players were classified as high Acc/fast MSS (>2% faster than group mean), medium (between −2% and +2%), and low/slow (>2% slower). Acc and MSS were very largely correlated (−0.79; 90% confidence limit [−0.85; −0.71]). The determinants (multiple regression r2 = 0.84 [0.78; 0.89]) of Acc were V0 (partial r: 0.80 [0.72; 0.86]) and F0 (0.57 [0.44; 0.68]); those of MSS (r2 = 0.96 [0.94; 0.97]) were V0 (0.96 [0.94; 0.97]) and Pmax (0.73 [0.63; −0.80]). High/Med have likely greater F0 (Cohen’s d: +0.8 [0.0; 1.5]), V0 (+0.6 [−0.1; 1.3]) and Pmax (+0.9 [0.2; 1.7]) than Low/Med. High/Fast have an almost certainly faster V0 (+2.1 [1.5; 2.7]) and a likely greater Pmax (+0.6 [−0.1; 1.3]) than High/Med, with no clear differences in F0 (−0.0 [−0.7; 0.6]). Speed may be a generic quality, but the mechanical horizontal determinants of Acc and MSS differ. While maximal speed training may improve both Acc and MSS, improving horizontal force production capability may be efficient to enhance sprinting performance over short distances.


Frontiers in Physiology | 2011

Effect of Maturation on Hemodynamic and Autonomic Control Recovery Following Maximal Running Exercise in Highly Trained Young Soccer Players

Martin Buchheit; Hani Al Haddad; Alberto Mendez-Villanueva; Marc J. Quod; Pitre C. Bourdon

The purpose of this study was to examine the effect of maturation on post-exercise hemodynamic and autonomic responses. Fifty-five highly trained young male soccer players (12–18 years) classified as pre-, circum-, or post-peak height velocity (PHV) performed a graded running test to exhaustion on a treadmill. Before (Pre) and after (5th–10th min, Post) exercise, heart rate (HR), stroke volume (SV), cardiac output (CO), arterial pressure (AP), and total peripheral resistance (TPR) were monitored. Parasympathetic (high frequency [HFRR] of HR variability (HRV) and baroreflex sensitivity [Ln BRS]) and sympathetic activity (low frequency [LFSAP] of systolic AP variability) were estimated. Post-exercise blood lactate [La]b, the HR recovery (HRR) time constant, and parasympathetic reactivation (time-varying HRV analysis) were assessed. In all three groups, exercise resulted in increased HR, CO, AP, and LFSAP (P < 0.001), decreased SV, HFRR, and Ln BRS (all P < 0.001), and no change in TPR (P = 0.98). There was no “maturation × time” interaction for any of the hemodynamic or autonomic variables (all P > 0.22). After exercise, pre-PHV players displayed lower SV, CO, and [La]b, faster HRR and greater parasympathetic reactivation compared with circum- and post-PHV players. Multiple regression analysis showed that lean muscle mass, [La]b, and Pre parasympathetic activity were the strongest predictors of HRR (r2 = 0.62, P < 0.001). While pre-PHV players displayed a faster HRR and greater post-exercise parasympathetic reactivation, maturation had little influence on the hemodynamic and autonomic responses following maximal running exercise. HRR relates to lean muscle mass, blood acidosis, and intrinsic parasympathetic function, with less evident impact of post-exercise autonomic function.


Journal of Sports Sciences | 2014

Relationships between anthropometric measures and athletic performance, with special reference to repeated-sprint ability, in the Qatar national soccer team

Franck Brocherie; Olivier Girard; Fabricio Forchino; Hani Al Haddad; Gilvan A. Dos Santos; Grégoire P. Millet

Abstract The aim of this study was to determine potential relationships between anthropometric parameters and athletic performance with special consideration to repeated-sprint ability (RSA). Sixteen players of the senior male Qatar national soccer team performed a series of anthropometric and physical tests including countermovement jumps without (CMJ) and with free arms (CMJwA), straight-line 20 m sprint, RSA (6 × 35 m with 10 s recovery) and incremental field test. Significant (P < 0.05) relationships occurred between muscle-to-bone ratio and both CMJs height (r ranging from 0.56 to 0.69) as well as with all RSA-related variables (r < –0.53 for sprinting times and r = 0.54 for maximal sprinting speed) with the exception of the sprint decrement score (Sdec). The sum of six skinfolds and adipose mass index were largely correlated with Sdec (r = 0.68, P < 0.01 and r = 0.55, P < 0.05, respectively) but not with total time (TT, r = 0.44 and 0.33, P > 0.05, respectively) or any standard athletic tests. Multiple regression analyses indicated that muscular cross-sectional area for mid-thigh, adipose index, straight-line 20 m time, maximal sprinting speed and CMJwA are the strongest predictors of Sdec (r2 = 0.89) and TT (r2 = 0.95) during our RSA test. In the Qatar national soccer team, players’ power-related qualities and RSA are associated with a high muscular profile and a low adiposity. This supports the relevance of explosive power for the soccer players and the larger importance of neuromuscular qualities determining the RSA.


International Journal of Sports Physiology and Performance | 2015

Peak Match Speed and Maximal Sprinting Speed in Young Soccer Players: Effect of Age and Playing Position

Hani Al Haddad; Ben M. Simpson; Martin Buchheit; Valter Di Salvo; Alberto Mendez-Villanueva

This study assessed the relationship between peak match speed (PMS) and maximal sprinting speed (MSS) in regard to age and playing positions. MSS and absolute PMS (PMSAbs) were collected from 180 male youth soccer players (U13-U17, 15.0 ± 1.2 y, 161.5 ± 9.2 cm, and 48.3 ± 8.7 kg). The fastest 10-m split over a 40-m sprint was used to determine MSS. PMSAbs was recorded using a global positioning system and was also expressed as a percentage of MSS (PMSRel). Sprint data were compared between age groups and between playing positions. Results showed that regardless of age and playing positions, faster players were likely to reach higher PMSAbs and possibly lower PMSRel. Despite a lower PMSAbs than in older groups (eg, 23.4 ± 1.8 vs 26.8 ± 1.9 km/h for U13 and U17, respectively, ES = 1.9 90%, confidence limits [1.6;2.1]), younger players reached a greater PMSRel (92.0% ± 6.3% vs. 87.2% ± 5.7% for U13 and U17, respectively, ES = -0.8 90% CL [-1.0;-0.5]). Playing position also affected PMSAbs and PMSRel, as strikers were likely to reach higher PMSAbs (eg, 27.0 ± 2.7 vs 23.6 ± 2.2 km/h for strikers and central midfielders, respectively, ES = 2.0 [1.7;2.2]) and PMSRel (eg, 93.6% ± 5.2% vs 85.3% ± 6.5% for strikers and central midfielders, respectively, ES = 1.0 [0.7;1.3]) than all other positions. The findings confirm that age and playing position affect the absolute and relative intensity of speed-related actions during matches.


Frontiers in Physiology | 2012

Effect of Acute Hypoxia on Post-Exercise Parasympathetic Reactivation in Healthy Men

Hani Al Haddad; Alberto Mendez-Villanueva; Pitre C. Bourdon; Martin Buchheit

In this study we assessed the effect of acute hypoxia on post-exercise parasympathetic reactivation inferred from heart rate (HR) recovery (HRR) and HR variability (HRV) indices. Ten healthy males participated in this study. Following 10 min of seated rest, participants performed 5 min of submaximal running at the speed associated with the first ventilatory threshold (Sub) followed by a 20-s all-out supramaximal sprint (Supra). Both Sub and Supra runs were immediately followed by 15 min of seated passive recovery. The resting and exercise sequence were performed in both normoxia (N) and normobaric hypoxia (H; FiO2 = 15.4%). HRR indices (e.g., heart beats recovered in the first minute after exercise cessation, HRR60s) and vagal-related HRV indices [i.e., natural logarithm of the square root of the mean of the sum of the squared differences between adjacent normal R–R intervals (Ln rMSSD)] were calculated for both conditions. Difference in the changes between N and H for all HR-derived indices were also calculated for both Sub and Supra. HRR60s was greater in N compared with H following Sub only (60 ± 14 vs. 52 ± 19 beats min−1, P = 0.016). Ln rMSSD was greater in N compared with H (post Sub: 3.60 ± 0.45 vs. 3.28 ± 0.44 ms in N and H, respectively, and post Supra: 2.66 ± 0.54 vs. 2.65 ± 0.63 ms, main condition effect P = 0.02). When comparing the difference in the changes, hypoxia decreased HRR60s (−14.3% ± 17.2 vs. 5.2% ± 19.3; following Sub and Supra, respectively; P = 0.03) and Ln rMSSD (−8.6% ± 7.0 vs. 2.0% ± 13.3, following Sub and Supra, respectively; P = 0.08, Cohen’s effect size = 0.62) more following Sub than Supra. While hypoxia may delay parasympathetic reactivation following submaximal exercise, its effect is not apparent following supramaximal exercise. This may suggest that the effect of blood O2 partial pressure on parasympathetic reactivation is limited under heightened sympathetic activation.


International Journal of Sports Physiology and Performance | 2015

Monitoring changes in jump and sprint performance: best or average values?

Hani Al Haddad; Ben M. Simpson; Martin Buchheit

This study compares different approaches to monitor changes in jump and sprint performance while using either the best or the average performance of repeated trials. One hundred two highly trained young footballers (U13 to U17) performed, in 2 different testing sessions separated by 4 mo, 3 countermovement jumps (n = 87) and 2 sprints (n = 98) over 40 m with 10-m splits to assess acceleration (first 10 m) and maximal sprinting speed (best split, MSS). Standardized group-average changes between the 2 testing periods and the typical error (TE) were calculated and compared for each method. The likelihood of substantial changes in performance for each individual player was also calculated. There was a small increase in jump performance (+6.1% for best and +7% for average performance). While 10-m time was likely unchanged (+~1.2% for both best and average performance), MSS showed likely small improvements (+~2.0% for both best and average performance). The TEs for jumping performance were 4.8% (90% confidence limits 4.3;5.6) and 4.3% (3.8;5.0) for best and average values, respectively; 1.8% (1.6;2.1) and 1.7% (1.5;1.9) for 10-m time and 2.0% (1.8;2.3) and 2.0% (1.8;2.3) for MSS. The standardized differences between TE were likely unclear or trivial for all comparisons (eg, 10-m, 0.01 [-0.09;0.10]). The numbers of players showing a likely increase or decrease in performance were 30/0 and 29/0 for best and average jump performances, 9/4 and 12/2 for 10-m times, and 33/4 and 33/4 for MSS. In conclusion, the 2 monitoring approaches are likely to provide similar outcomes.


European Journal of Applied Physiology | 2010

Influence of cold water face immersion on post-exercise parasympathetic reactivation.

Hani Al Haddad; Paul B. Laursen; Said Ahmaidi; Martin Buchheit

Collaboration


Dive into the Hani Al Haddad's collaboration.

Top Co-Authors

Avatar

Said Ahmaidi

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar

Bachar Haydar

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar

Martin Buchheit

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar

Valter Di Salvo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul B. Laursen

Auckland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Benoit Morin

University of Nice Sophia Antipolis

View shared research outputs
Researchain Logo
Decentralizing Knowledge