Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hani Kim is active.

Publication


Featured researches published by Hani Kim.


Developmental Cell | 2013

Multimolecular Signaling Complexes Enable Syk-Mediated Signaling of CD36 Internalization

Bryan Heit; Hani Kim; Gabriela Cosío; Diana Castaño; Richard A. Collins; Clifford A. Lowell; Kevin C. Kain; William S. Trimble; Sergio Grinstein

CD36 is a versatile receptor known to play a central role in the development of atherosclerosis, the pathogenesis of malaria, and the removal of apoptotic cells. Remarkably, the short cytosolically exposed regions of CD36 lack identifiable motifs, which has hampered elucidation of its mode of signaling. Using a combination of phosphoprotein isolation, mass spectrometry, superresolution imaging, and gene silencing, we have determined that the receptor induces ligand internalization through a heteromeric complex consisting of CD36, β1 and/or β2 integrins, and the tetraspanins CD9 and/or CD81. This receptor complex serves to link CD36 to the adaptor FcRγ, which bears an immunoreceptor tyrosine activation motif. By coupling to FcRγ, CD36 is able to engage Src-family kinases and Syk, which in turn drives the internalization of CD36 and its bound ligands.


Current Opinion in Hematology | 2011

Endothelial activation and dysregulation in malaria: a potential target for novel therapeutics.

Hani Kim; Sarah J. Higgins; W. Conrad Liles; Kevin C. Kain

Purpose of reviewDespite parenteral artesunate therapy, the fatality rate of cerebral malaria remains high. Adjunctive therapy targeting the underlying pathophysiology of cerebral malaria may further improve the clinical outcome. Endothelial activation and dysfunction is a central process in the pathogenesis of cerebral malaria. An improved understanding of how endothelium is perturbed in cerebral malaria may yield novel strategies to diagnose and intervene. Here, we discuss recent findings on the key molecular mediators of endothelial activation/dysregulation in cerebral malaria, and innovative endothelial-based experimental approaches to improve detection and treatment. Recent findingsBiomarkers of endothelial activation [e.g., angiopoietin (Ang)-1, Ang-2, and a soluble form of the Ang-receptor (soluble Tie-2)] have been shown to be reliable predictors of malarial disease severity and mortality, and may improve clinical triage and management. Moreover, they may represent novel therapeutic targets to improve clinical outcome. Restoring bioavailable nitric oxide by administration of inhaled nitric oxide or its substrate, L-arginine, may rescue endothelial function, decrease Ang-2, and improve disease outcome in cerebral malaria. SummaryInterventions targeting the Ang–Tie-2 axis to promote endothelial quiescence, including agents to improve endothelial nitric oxide, represent potential adjunctive therapies for cerebral malaria.


PLOS ONE | 2011

Inhaled Nitric Oxide Reduces Endothelial Activation and Parasite Accumulation in the Brain, and Enhances Survival in Experimental Cerebral Malaria

Lena Serghides; Hani Kim; Ziyue Lu; Dylan C Kain; Christopher C. Miller; Roland C. E. Francis; W. Conrad Liles; Warren M. Zapol; Kevin C. Kain

The host immune response contributes to the onset and progression of severe malaria syndromes, such as cerebral malaria. Adjunctive immunomodulatory strategies for severe malaria may improve clinical outcome beyond that achievable with artemisinin-based therapy alone. Here, we report that prophylaxis with inhaled nitric oxide significantly reduced systemic inflammation (lower TNF, IFNγ and MCP-1 in peripheral blood) and endothelial activation (decreased sICAM-1 and vWF, and increased angiopoeitin-1 levels in peripheral blood) in an experimental cerebral malaria model. Mice that received inhaled nitric oxide starting prior to infection had reduced parasitized erythrocyte accumulation in the brain, decreased brain expression of ICAM-1, and preserved vascular integrity compared to control mice. Inhaled nitric oxide administered in combination with artesunate, starting as late as 5.5 days post-infection, improved survival over treatment with artesunate alone (70% survival in the artesunate only vs. 100% survival in the artesunate plus iNO group, p = 0.03). These data support the clinical investigation of inhaled nitric oxide as a novel adjunctive therapy in patients with severe malaria.


Infection and Immunity | 2014

Functional Roles for C5a and C5aR but Not C5L2 in the Pathogenesis of Human and Experimental Cerebral Malaria

Hani Kim; Laura K. Erdman; Ziyue Lu; Lena Serghides; Kathleen Zhong; Aggrey Dhabangi; Charles Musoke; Craig Gerard; W. Conrad Liles; Kevin C. Kain

ABSTRACT The host immune response plays an important role in the onset and progression of cerebral malaria (CM). The complement system is an essential component of the innate immune response to malaria, and its activation generates the anaphylatoxin C5a. To test the hypothesis that C5a signaling contributes to the pathogenesis of CM, we investigated a causal role for the C5a receptors C5aR and C5L2 in a mouse model of experimental CM (ECM) induced by Plasmodium berghei ANKA infection, and using a case-control design, we examined levels of C5a in plasma samples from Ugandan children presenting with CM or uncomplicated malaria (UM). In the ECM model, C5aR −/− mice displayed significantly improved survival compared to their wild-type (WT) counterparts (P = 0.004), whereas C5L2 −/− mice showed no difference in survival from WT mice. Improved survival in C5aR −/− mice was associated with reduced levels of the proinflammatory cytokines tumor necrosis factor (TNF) and gamma interferon (IFN-γ) and the chemokine, monocyte chemoattractant protein 1 (MCP-1) (CCL2). Furthermore, endothelial integrity was enhanced, as demonstrated by increased levels of angiopoietin-1, decreased levels of angiopoietin-2 and soluble ICAM-1, and decreased Evans blue extravasation into brain parenchyma. In the case-control study, the median levels of C5a at presentation were significantly higher in children with CM versus those in children with UM (43.7 versus 22.4 ng/ml; P < 0.001). These findings demonstrate that C5a is dysregulated in human CM and contributes to the pathogenesis of ECM via C5aR-dependent inflammation and endothelial dysfunction.


BMC Immunology | 2014

Mesenchymal stromal (stem) cells suppress pro-inflammatory cytokine production but fail to improve survival in experimental staphylococcal toxic shock syndrome

Hani Kim; Ilyse Darwish; Maria-Fernanda Monroy; Darwin J. Prockop; W. Conrad Liles; Kevin C. Kain

BackgroundToxic shock syndrome (TSS) is caused by an overwhelming host-mediated response to bacterial superantigens produced mainly by Staphylococcus aureus and Streptococcus pyogenes. TSS is characterized by aberrant activation of T cells and excessive release of pro-inflammatory cytokines ultimately resulting in capillary leak, septic shock, multiple organ dysfunction and high mortality rates. No therapeutic or vaccine has been approved by the U.S. Food and Drug Administration for TSS, and novel therapeutic strategies to improve clinical outcome are needed. Mesenchymal stromal (stem) cells (MSCs) are stromal cells capable of self-renewal and differentiation. Moreover, MSCs have immunomodulatory properties, including profound effects on activities of T cells and macrophages in specific contexts. Based on the critical role of host-derived immune mediators in TSS, we hypothesized that MSCs could modulate the host-derived proinflammatory response triggered by Staphylococcal enterotoxin B (SEB) and improve survival in experimental TSS.MethodsEffects of MSCs on proinflammatory cytokines in peripheral blood were measured in wild-type C57BL/6 mice injected with 50 μg of SEB. Effects of MSCs on survival were monitored in fatal experimental TSS induced by consecutive doses of D-galactosamine (10 mg) and SEB (10 μg) in HLA-DR4 transgenic mice.ResultsDespite significantly decreasing serum levels of IL-2, IL-6 and TNF induced by SEB in wild-type mice, human MSCs failed to improve survival in experimental TSS in HLA-DR4 transgenic mice. Similarly, a previously described downstream mediator of human MSCs, TNF-stimulated gene 6 (TSG-6), did not significantly improve survival in experimental TSS. Furthermore, murine MSCs, whether unstimulated or pre-treated with IFNγ, failed to improve survival in experimental TSS.ConclusionsOur results suggest that the immunomodulatory effects of MSCs are insufficient to rescue mice from experimental TSS, and that mediators other than IL-2, IL-6 and TNF are likely to play critical mechanistic roles in the pathogenesis of experimental TSS.


PLOS ONE | 2013

Mesenchymal Stromal (Stem) Cell Therapy Fails to Improve Outcomes in Experimental Severe Influenza

Ilyse Darwish; David Banner; Samira Mubareka; Hani Kim; Rickvinder Besla; David J. Kelvin; Kevin C. Kain; W. Conrad Liles

Rationale Severe influenza remains a major public health threat and is responsible for thousands of deaths annually. Increasing antiviral resistance and limited effectiveness of current therapies highlight the need for new approaches to influenza treatment. Extensive pre-clinical data have shown that mesenchymal stromal (stem) cell (MSC) therapy can induce anti-inflammatory effects and enhance repair of the injured lung. We hypothesized that MSC therapy would improve survival, dampen lung inflammation and decrease acute lung injury (ALI) in a murine model of severe influenza. Methods C57Bl/6 mice were infected with influenza A/PuertoRico/8/34 (mouse-adapted H1N1) or influenza A/Mexico/4108/2009 (swine-origin pandemic H1N1) and administered human or mouse MSCs via the tail vein, either pre- or post- infection. MSC efficacy was evaluated as both an independent and adjunctive treatment strategy in combination with the antiviral agent, oseltamivir. Weight loss and survival were monitored. Inflammatory cells, cytokine/chemokines (IFN-γ, CXCL10, CCL2 and CCL5) and markers of ALI (total protein and IgM), were measured in bronchoalveolar lavage fluid and lung parenchyma. Results Administration of murine MSCs or human MSCs in a prophylactic or therapeutic regimen failed to improve survival, decrease pulmonary inflammation/inflammatory cell counts or prevent ALI in influenza virus-infected mice. MSCs administered in combination with oseltamivir also failed to improve outcomes. Conclusions Despite similarities in the clinical presentation and pathobiology of ALI and severe influenza, our findings suggest that MSC therapy may not be effective for prevention and/or treatment of acute severe influenza.


Malaria Journal | 2013

Systemic release of high mobility group box 1 (HMGB1) protein is associated with severe and fatal Plasmodium falciparum malaria

Sarah J. Higgins; Katharine Xing; Hani Kim; Dylan C Kain; Feng Wang; Aggrey Dhabangi; Charles Musoke; Kevin J. Tracey; Kevin C. Kain; W. Conrad Liles

BackgroundSevere falciparum malaria (SM) pathogenesis has been attributed, in part, to deleterious systemic host inflammatory responses to infection. High mobility group box 1 (HMGB1) protein is an important mediator of inflammation implicated in sepsis pathophysiology.MethodsPlasma levels of HMGB1 were quantified in a cohort of febrile Ugandan children with Plasmodium falciparum infection, enrolled in a prospective observational case-controlled study, using a commercial enzyme-linked immunosorbent assay. The utility of HMGB1 to distinguish severe malaria (SM; n = 70) from uncomplicated malaria (UM; n = 33) patients and fatal (n = 21) versus non-fatal (n = 82) malaria, at presentation, was examined. Receiver operating characteristic curve analysis was used to assess the prognostic accuracy of HMGB1. The ability of P. falciparum-parasitized erythrocytes to induce HMGB1 from peripheral blood mononuclear cells was assessed in vitro. The effect of an anti-HMGB1 neutralizing antibody on disease outcome was assessed in the experimental Plasmodium berghei ANKA rodent parasite model of SM. Mortality and parasitaemia was assessed daily and compared to isotype antibody-treated controls.ResultsElevated plasma HMGB1 levels at presentation were significantly associated with SM and a subsequent fatal outcome in paediatric patients with P. falciparum infection. In vitro, parasitized erythrocytes induced HMGB1 release from human peripheral blood mononuclear cells. Antibody-mediated neutralization of HMGB1 in the experimental murine model of severe malaria failed to reduce mortality.ConclusionThese data suggest that elevated HMGB1 is an informative prognostic marker of disease severity in human SM, but do not support HMGB1 as a viable target for therapeutic intervention in experimental murine SM.


Medical Hypotheses | 2011

Nitric oxide for the adjunctive treatment of severe malaria: hypothesis and rationale.

Michael Hawkes; Robert O. Opoka; Sophie Namasopo; Christopher C. Miller; Andrea L. Conroy; Lena Serghides; Hani Kim; Nisha Thampi; W. Conrad Liles; Chandy C. John; Kevin C. Kain

We hypothesize that supplemental inhaled nitric oxide (iNO) will improve outcomes in children with severe malaria receiving standard antimalarial therapy. The rationale for the hypothesized efficacy of iNO rests on: (1) biological plausibility, based on known actions of NO in modulating endothelial activation; (2) pre-clinical efficacy data from animal models of experimental cerebral malaria; and (3) a human trial of the NO precursor l-arginine, which improved endothelial function in adults with severe malaria. iNO is an attractive new candidate for the adjunctive treatment of severe malaria, given its proven therapeutic efficacy in animal studies, track record of safety in clinical practice and numerous clinical trials, inexpensive manufacturing costs, and ease of administration in settings with limited healthcare infrastructure. We plan to test this hypothesis in a randomized controlled trial (ClinicalTrials.gov Identifier: NCT01255215).


Molecular Medicine | 2017

miR-155 Modifies Inflammation, Endothelial Activation and Blood-Brain Barrier Dysfunction in Cerebral Malaria.

Kevin R. Barker; Ziyue Lu; Hani Kim; Ying Zheng; Junmei Chen; Andrea L. Conroy; Michael Hawkes; Henry S. Cheng; Makon-Sébastien Njock; Jason E. Fish; John M. Harlan; José A. López; W. Conrad Liles; Kevin C. Kain

AbstractmiR-155 has been shown to participate in host response to infection and neuroinflammation via negative regulation of blood-brain barrier (BBB) integrity and T cell function. We hypothesized that miR-155 may contribute to the pathogenesis of cerebral malaria (CM). To test this hypothesis, we used a genetic approach to modulate miR-155 expression in an experimental model of cerebral malaria (ECM). In addition, an engineered endothelialized microvessel system and serum samples from Ugandan children with CM were used to examine anti-miR-155 as a potential adjunctive therapeutic for severe malaria. Despite higher parasitemia, survival was significantly improved in miR-155−/− mice versus wild-type littermate mice in ECM. Improved survival was associated with preservation of BBB integrity and reduced endothelial activation, despite increased levels of proinflammatory cytokines. Pretreatment with antagomir-155 reduced vascular leak induced by human CM sera in an ex vivo endothelial microvessel model. These data provide evidence supporting a mechanistic role for miR-155 in host response to malaria via regulation of endothelial activation, microvascular leak and BBB dysfunction in CM.


PLOS Pathogens | 2015

Experimental Malaria in Pregnancy Induces Neurocognitive Injury in Uninfected Offspring via a C5a-C5a Receptor Dependent Pathway.

Chloe R. McDonald; Lindsay S. Cahill; Keith T. Ho; Jimmy Yang; Hani Kim; Karlee L. Silver; Peter A. Ward; Howard T.J. Mount; W. Conrad Liles; John G. Sled; Kevin C. Kain

The in utero environment profoundly impacts childhood neurodevelopment and behaviour. A substantial proportion of pregnancies in Africa are at risk of malaria in pregnancy (MIP) however the impact of in utero exposure to MIP on fetal neurodevelopment is unknown. Complement activation, in particular C5a, may contribute to neuropathology and adverse outcomes during MIP. We used an experimental model of MIP and standardized neurocognitive testing, MRI, micro-CT and HPLC analysis of neurotransmitter levels, to test the hypothesis that in utero exposure to malaria alters neurodevelopment through a C5a-C5aR dependent pathway. We show that malaria-exposed offspring have persistent neurocognitive deficits in memory and affective-like behaviour compared to unexposed controls. These deficits were associated with reduced regional brain levels of major biogenic amines and BDNF that were rescued by disruption of C5a-C5aR signaling using genetic and functional approaches. Our results demonstrate that experimental MIP induces neurocognitive deficits in offspring and suggest novel targets for intervention.

Collaboration


Dive into the Hani Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher C. Miller

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge