Hanjing Yang
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hanjing Yang.
Cancer Research | 2004
Yali Xie; Hanjing Yang; Cristina Cunanan; Kimberly Okamoto; Darryl Shibata; Janet Pan; Deborah E. Barnes; Tomas Lindahl; Michael A. McIlhatton; Richard Fishel; Jeffrey H. Miller
Oxidative DNA damage is unavoidably and continuously generated by oxidant byproducts of normal cellular metabolism. The DNA damage repair genes, mutY and mutM, prevent G to T mutations caused by reactive oxygen species in Escherichia coli, but it has remained debatable whether deficiencies in their mammalian counterparts, Myh and Ogg1, are directly involved in tumorigenesis. Here, we demonstrate that deficiencies in Myh and Ogg1 predispose 65.7% of mice to tumors, predominantly lung and ovarian tumors, and lymphomas. Remarkably, subsequent analyses identified G to T mutations in 75% of the lung tumors at an activating hot spot, codon 12, of the K-ras oncogene, but none in their adjacent normal tissues. Moreover, malignant lung tumors were increased with combined heterozygosity of Msh2, a mismatch repair gene involved in oxidative DNA damage repair as well. Thus, oxidative DNA damage appears to play a causal role in tumorigenesis, and codon 12 of K-ras is likely to be an important downstream target in lung tumorigenesis. The multiple oxidative repair genes are required to prevent mutagenesis and tumor formation. The mice described here provide a valuable model for studying the mechanisms of oxidative DNA damage in tumorigenesis and investigating preventive or therapeutic approaches.
DNA Repair | 2003
Lilit Garibyan; Tiffany T. Huang; Mandy Kim; Erika Wolff; Anh Nguyen; Theresa Nguyen; Amy Diep; Kaibin Hu; Ayuko Iverson; Hanjing Yang; Jeffrey H. Miller
Mutations in the rpoB gene of Escherichia coli result in resistance to the antibiotic rifampicin (Rif(r)) by altering the beta subunit of RNA polymerase. Previous studies have identified 39 single base substitutions in the rpoB gene that lead to Rif(r) at 37 degrees C and an additional two mutations that result in temperature sensitive cells. We have extended this work and identified an additional 30 single base substitutions that result in the Rif(r) phenotype. With these mutations the rpoB/Rif(r) system now allows the monitoring of 69 base substitutions at 37 degrees at 37 sites (base pairs) distributed among 24 coding positions. Each of the six possible base substitutions is represented by 8-17 mutations. More than 90% of the mutations are within a small enough region of the rpoB gene to allow PCR amplification with a single pair of oligonucleotide primers, followed by sequencing with a single primer, leading to rapid analysis of numerous mutations. The remaining mutations can be monitored using an additional primer pair. To calibrate this system we sequenced over 500 mutations in rpoB occurring spontaneously or generated by different mutagens and mutators with known specificity. These results show that rpoB/Rif(r) is an accurate and easy to employ detection system, and offers the advantage of allowing analysis of mutations occurring on the chromosome rather than on an extrachromosomal element. The mutS, mutT, mutY, M mutators, as well as the mutagenic agents ethyl methanesulfonate (EMS), ultraviolet (UV) irradiation, 2-aminopurine (2AP), 5-azacytidine (5AZ), and cisplatin (CPT) gave results predicted by their characterized specificities. The number of different sequence contexts is sufficient to reveal significant hotspots among the spontaneous mutS, 2-aminopurine, ultraviolet light, 5-azacytidine, and cisplatin mutational spectra. The cisplatin distribution is particularly striking, with 68% of the mutations resulting from an A:T-->T:A transversion at a single site. Because of the conservation of key regions of RNA polymerase among many microorganisms, using the Rif(r)/rpoB system may be a general method for studying mutational processes in microorganisms without well developed genetic systems.
Cancer Research | 2004
Maria Teresa Russo; Gabriele De Luca; Paolo Degan; Eleonora Parlanti; Eugenia Dogliotti; Deborah E. Barnes; Tomas Lindahl; Hanjing Yang; Jeffrey H. Miller; Margherita Bignami
The OGG1 and MYH DNA glycosylases prevent the accumulation of DNA 8-hydroxyguanine. In Myh−/− mice, there was no time-dependent accumulation of DNA 8-hydroxyguanine in brain, small intestine, lung, spleen, or kidney. Liver was an exception to this general pattern. Inactivation of both MYH and OGG1 caused an age-associated accumulation of DNA 8-hydroxyguanine in lung and small intestine. The effects of abrogated OGG1 and MYH on hepatic DNA 8-hydroxyguanine levels were additive. Because there is an increased incidence of lung and small intestine cancer in Myh−/−/Ogg1−/− mice, these findings support a causal role for unrepaired oxidized DNA bases in cancer development.
The EMBO Journal | 2002
Alessandro A. Sartori; Sorel Fitz-Gibbon; Hanjing Yang; Jeffrey H. Miller; Josef Jiricny
Uracil‐DNA glycosylases (UDGs) catalyse the removal of uracil by flipping it out of the double helix into their binding pockets, where the glycosidic bond is hydrolysed by a water molecule activated by a polar amino acid. Interestingly, the four known UDG families differ in their active site make‐up. The activating residues in UNG and SMUG enzymes are aspartates, thermostable UDGs resemble UNG‐type enzymes, but carry glutamate rather than aspartate residues in their active sites, and the less active MUG/TDG enzymes contain an active site asparagine. We now describe the first member of a fifth UDG family, Pa‐UDGb from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum, the active site of which lacks the polar residue that was hitherto thought to be essential for catalysis. Moreover, Pa‐UDGb is the first member of the UDG family that efficiently catalyses the removal of an aberrant purine, hypoxanthine, from DNA. We postulate that this enzyme has evolved to counteract the mutagenic threat of cytosine and adenine deamination, which becomes particularly acute in organisms living at elevated temperatures.
Antimicrobial Agents and Chemotherapy | 2011
Anne Liu; Amie Fong; Elinne Becket; Jessica Yuan; Cindy Tamae; Leah Medrano; Maria Maiz; Christine Wahba; Cathy C. Lee; Kim Lee; Katherine Tran; Hanjing Yang; Robert M. Hoffman; Anya Salih; Jeffrey H. Miller
ABSTRACT Many studies have examined the evolution of bacterial mutants that are resistant to specific antibiotics, and many of these focus on concentrations at and above the MIC. Here we ask for the minimum concentration at which existing resistant mutants can outgrow sensitive wild-type strains in competition experiments at antibiotic levels significantly below the MIC, and we define a minimum selective concentration (MSC) in Escherichia coli for two antibiotics, which is near 1/5 of the MIC for ciprofloxacin and 1/20 of the MIC for tetracycline. Because of the prevalence of resistant mutants already in the human microbiome, allowable levels of antibiotics to which we are exposed should be below the MSC. Since this concentration often corresponds to low or trace levels of antibiotics, it is helpful to have simple tests to detect such trace levels. We describe a simple ultrasensitive test for detecting the presence of antibiotics and genotoxic agents. The test is based on the use of chromogenic proteins as color markers and the use of single and multiple mutants of Escherichia coli that have greatly increased sensitivity to either a wide range of antibiotics or specific antibiotics, antibiotic families, and genotoxic agents. This test can detect ciprofloxacin at 1/75 of the MIC.
Journal of Bacteriology | 2000
Hanjing Yang; Sorel Fitz-Gibbon; Edward M. Marcotte; Jennifer Tai; Elizabeth C. Hyman; Jeffrey H. Miller
U/G and T/G mismatches commonly occur due to spontaneous deamination of cytosine and 5-methylcytosine in double-stranded DNA. This mutagenic effect is particularly strong for extreme thermophiles, since the spontaneous deamination reaction is much enhanced at high temperature. Previously, a U/G and T/G mismatch-specific glycosylase (Mth-MIG) was found on a cryptic plasmid of the archaeon Methanobacterium thermoautotrophicum, a thermophile with an optimal growth temperature of 65 degrees C. We report characterization of a putative DNA glycosylase from the hyperthermophilic archaeon Pyrobaculum aerophilum, whose optimal growth temperature is 100 degrees C. The open reading frame was first identified through a genome sequencing project in our laboratory. The predicted product of 230 amino acids shares significant sequence homology to [4Fe-4S]-containing Nth/MutY DNA glycosylases. The histidine-tagged recombinant protein was expressed in Escherichia coli and purified. It is thermostable and displays DNA glycosylase activities specific to U/G and T/G mismatches with an uncoupled AP lyase activity. It also processes U/7,8-dihydro-oxoguanine and T/7,8-dihydro-oxoguanine mismatches. We designate it Pa-MIG. Using sequence comparisons among complete bacterial and archaeal genomes, we have uncovered a putative MIG protein from another hyperthermophilic archaeon, Aeropyrum pernix. The unique conserved amino acid motifs of MIG proteins are proposed to distinguish MIG proteins from the closely related Nth/MutY DNA glycosylases.
Molecular Microbiology | 2004
Hanjing Yang; Erika Wolff; Mandy Kim; Amy Diep; Jeffrey H. Miller
We searched for genes that create mutator phenotypes when put on to a multicopy plasmid in Escherichia coli. In many cases, this will result in overexpression of the gene in question. We constructed a random shotgun library with E. coli genomic fragments between 3 and 5 kbp in length on a multicopy plasmid vector that was transformed into E. coli to screen for frameshift mutators. We identified a total of 115 independent genomic fragments that covered 17 regions on the E. coli chromosome. Further studies identified 12 genes not previously known as causing mutator phenotypes when overproduced. A striking finding is that overproduction of the multidrug resistance transcription regulator, EmrR, results in a large increase in frameshift and base substitution mutagenesis. This suggests a link between multidrug resistance and mutagenesis. Other identified genes include those encoding DNA helicases (UvrD, RecG, RecQ), truncated forms of the DNA mismatch repair protein (MutS) and a primosomal component (DnaT), a negative modulator of initiation of replication/GATC‐binding protein (SeqA), a stationary phase regulator AppY, a transcriptional regulator PaaX and three putative open reading frames, ycgW, yfjY and yjiD, encoding hypothetical proteins. In addition, we found three genes encoding proteins that were previously known to cause mutator effects under overexpression conditions: error‐prone polymerase IV (DinB), DNA methylase (Dam) and sigma S factor (RpoS). This genomic strategy offers an approach to identify novel mutator effects resulting from the multicopy cloning (MCC) of specific genes and therefore complementing the conventional gene inactivation approach to finding mutators.
Cancer Research | 2004
Oliver M. Sieber; Kimberley Howarth; Christina Thirlwell; Andrew D. Rowan; Nikki Mandir; Robert A. Goodlad; Ashfaq Gilkar; Bradley Spencer-Dene; Gordon Stamp; Victoria A. Johnson; Andrew Silver; Hanjing Yang; Jeffrey H. Miller; Mohammad Ilyas; Ian Tomlinson
Monoallelic APC and biallelic MYH (homolog of Escherichia coli mutY) germ-line mutations are independently associated with a strong predisposition to colorectal adenomas and carcinoma in humans. Whereas mice heterozygous for mutant Apc develop intestinal tumors, mice homozygous for mutant Myh do not show increased tumor susceptibility. We analyzed the phenotype of ApcMin/+/Myh−/− mice and found that they developed significantly more adenomas in the small intestine than did ApcMin/+/Myh+/+ or ApcMin/+/Myh+/− mice (median 231 versus 151 versus 152). In the large bowel, ApcMin/+/Myh−/− mice showed significant increases in the number of aberrant crypt foci. In addition, ApcMin/+/Myh−/− mice developed an increased number of mammary tumors. Molecular analyses suggested that at least 19% of intestinal tumors from ApcMin/+/Myh−/− mice had acquired intragenic Apc mutations rather than allelic loss. Consistent with a defect in base excision repair, three intragenic Apc mutations in polyps without allelic loss from ApcMin/+/Myh−/− mice were shown to be G:C to T:A transversions which resulted in termination codons; no such mutations were found in polyps from ApcMin/+/Myh+/+ or ApcMin/+/Myh+/− mice. Tumors from ApcMin/+/Myh+/− mice harbored neither somatic mutations nor allelic loss at Myh. Thus, homozygous, but not heterozygous, Myh deficiency enhanced intestinal tumorigenesis in ApcMin/+ mice. The excess small-bowel adenomas in ApcMin/+/Myh−/− mice, therefore, appear to be a model of MYH-associated polyposis in humans.
Carcinogenesis | 2008
Yali Xie; Hanjing Yang; Jeffrey H. Miller; Diana M. Shih; Geoffrey G. Hicks; Jiuyong Xie; Robert P. C. Shiu
Oxidative stress generated from endogenous and exogenous sources causes oxidative DNA damage. The most frequent mutagenic base lesion 7,8-dihydro-8-oxoguanine and the resulting mismatched adenine are removed by OGG1 and MYH in mammals. Deficiencies in human MYH or mouse MYH and OGG1 result in tumor predisposition but the underlying molecular mechanism is not fully understood. To facilitate the study of the roles of MYH and OGG1 in the protection against oxidative stress, we generated mouse embryonic fibroblast cell lines deficient in these genes. Myh and Ogg1 double knockout cells were more sensitive than wild type to oxidants (hydrogen peroxide and t-butyl hydroperoxide), but not to cis-platinum or gamma-irradiations. The low dosage oxidative stress resulted in more reduction of S phase and increase of G(2)/M phase in Myh(-/-)Ogg1(-/-) cells than in wild-type cells, but a similar level of cell death in both cells. The oxidants also induced more multinucleated cells in Myh(-/-)Ogg1(-/-) cells than in wild-type, accompanied by centrosome amplification and multipolar spindle formation. Thus, under oxidative stress, Myh and Ogg1 are likely required for normal cell-cycle progression and nuclear division, suggesting multiple roles of Myh and Ogg1 in the maintenance of genome stability and tumor prevention.
Molecular Microbiology | 2011
Hanjing Yang; Cameron Sikavi; Katherine Tran; Shauna M. McGillivray; Victor Nizet; Madeline Yung; Aileen Chang; Jeffrey H. Miller
Colonies of Bacillus anthracis Sterne allow the growth of papillation after 6 days of incubation at 30°C on Luria–Bertani medium. The papillae are due to mutations that allow the cells to overcome the barriers to continued growth. Cells isolated from papillae display two distinct gross phenotypes (group A and group B). We determined that group A mutants have mutations in the nprR gene including frameshifts, deletions, duplications and base substitutions. We used papillation as a tool for finding new mutators as the mutators generate elevated levels of papillation. We discovered that disruption of yycJ or recJ leads to a spontaneous mutator phenotype. We defined the nprR/papillation system as a new mutational analysis system for B. anthracis. The mutational specificity of the new mutator yycJ is similar to that of mismatch repair‐deficient strains (MMR‐) such as those with mutations in mutL or mutS. Deficiency in recJ results in a unique specificity, generating only tandem duplications.