Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hank La is active.

Publication


Featured researches published by Hank La.


Bioorganic & Medicinal Chemistry Letters | 2009

GDC―0449―A potent inhibitor of the hedgehog pathway

Kirk Robarge; Shirley A. Brunton; Georgette Castanedo; Yong Cui; Michael S. Dina; Richard Goldsmith; Stephen E. Gould; Oivin Guichert; Janet Gunzner; Jason S. Halladay; Wei Jia; Cyrus Khojasteh; Michael F. T. Koehler; Karen Kotkow; Hank La; Rebecca L. LaLonde; Kevin Lau; Leslie Lee; Derek Marshall; James C. Marsters; Lesley J. Murray; Changgeng Qian; Lee L. Rubin; Laurent Salphati; Mark S. Stanley; John H.A. Stibbard; Daniel P. Sutherlin; Savita Ubhayaker; Shumei Wang; Susan Wong

SAR for a wide variety of heterocyclic replacements for a benzimidazole led to the discovery of functionalized 2-pyridyl amides as novel inhibitors of the hedgehog pathway. The 2-pyridyl amides were optimized for potency, PK, and drug-like properties by modifications to the amide portion of the molecule resulting in 31 (GDC-0449). Amide 31 produced complete tumor regression at doses as low as 12.5mg/kg BID in a medulloblastoma allograft mouse model that is wholly dependent on the Hh pathway for growth and is currently in human clinical trials, where it is initially being evaluated for the treatment of BCC.


Clinical Cancer Research | 2012

Antitumor Activity of Targeted and Cytotoxic Agents in Murine Subcutaneous Tumor Models Correlates with Clinical Response

Harvey Wong; Edna F. Choo; Bruno Alicke; Xiao Ding; Hank La; Erin McNamara; Frank-Peter Theil; Jay Tibbitts; Lori Friedman; Cornelis E. C. A. Hop; Stephen E. Gould

Purpose: Immunodeficient mice transplanted with subcutaneous tumors (xenograft or allograft) are widely used as a model of preclinical activity for the discovery and development of anticancer drug candidates. Despite their widespread use, there is a widely held view that these models provide minimal predictive value for discerning clinically active versus inactive agents. To improve the predictive nature of these models, we have carried out a retrospective population pharmacokinetic–pharmacodynamic (PK–PD) analysis of relevant xenograft/allograft efficacy data for eight agents (molecularly targeted and cytotoxic) with known clinical outcome. Experimental Design: PK–PD modeling was carried out to first characterize the relationship between drug concentration and antitumor activity for each agent in dose-ranging xenograft or allograft experiments. Next, simulations of tumor growth inhibition (TGI) in xenografts/allografts at clinically relevant doses and schedules were carried out by replacing the murine pharmacokinetics, which were used to build the PK–PD model with human pharmacokinetics obtained from literature to account for species differences in pharmacokinetics. Results: A significant correlation (r = 0.91, P = 0.0008) was observed between simulated xenograft/allograft TGI driven by human pharmacokinetics and clinical response but not when TGI observed at maximum tolerated doses in mice was correlated with clinical response (r = 0.36, P = 0.34). Conclusions: On the basis of these analyses, agents that led to greater than 60% TGI in preclinical models, at clinically relevant exposures, are more likely to lead to responses in the clinic. A proposed strategy for the use of murine subcutaneous models for compound selection in anticancer drug discovery is discussed. Clin Cancer Res; 18(14); 3846–55. ©2012 AACR.


Clinical Cancer Research | 2011

Pharmacokinetic–Pharmacodynamic Analysis of Vismodegib in Preclinical Models of Mutational and Ligand-Dependent Hedgehog Pathway Activation

Harvey Wong; Bruno Alicke; Kristina West; Patricia Pacheco; Hank La; Tom Januario; Robert L. Yauch; Frederic J. de Sauvage; Stephen E. Gould

Purpose: Vismodegib (GDC-0449) is a potent and selective inhibitor of the Hedgehog (Hh) pathway that shows antitumor activity in preclinical models driven by mutational or ligand-dependent activation of the Hh pathway. We wished to characterize the pharmacokinetic–pharmacodynamic (PK/PD) relationship of vismodegib in both model systems to guide optimal dose and schedule for vismodegib in the clinic. Experimental Design: Preclinical efficacy and PK/PD studies were carried out with vismodegib in a Ptch+/− allograft model of medulloblastoma exhibiting mutational activation of the Hh pathway and patient-derived colorectal cancer (CRC) xenograft models exhibiting ligand-dependent pathway activation. Inhibition of the hedgehog pathway was related to vismodegib levels in plasma and to antitumor efficacy using an integrated population-based PK/PD model. Results: Oral dosing of vismodegib caused tumor regressions in the Ptch+/− allograft model of medulloblastoma at doses ≥25 mg/kg and tumor growth inhibition at doses up to 92 mg/kg dosed twice daily in two ligand-dependent CRC models, D5123, and 1040830. Analysis of Hh pathway activity and PK/PD modeling reveals that vismodegib inhibits Gli1 with a similar IC50 in both the medulloblastoma and D5123 models (0.165 μmol/L ±11.5% and 0.267 μmol/L ±4.83%, respectively). Pathway modulation was linked to efficacy using an integrated PK/PD model revealing a steep relationship where > 50% of the activity of vismodegib is associated with >80% repression of the Hh pathway. Conclusions: These results suggest that even small reductions in vismodegib exposure can lead to large changes in antitumor activity and will help guide proper dose selection for vismodegib in the clinic. Clin Cancer Res; 17(14); 4682–92. ©2011 AACR.


PLOS ONE | 2013

SAHA Enhances Synaptic Function and Plasticity In Vitro but Has Limited Brain Availability In Vivo and Does Not Impact Cognition

Jesse E. Hanson; Hank La; Emile Plise; Yung-Hsiang Chen; Xiao Ding; Taleen Hanania; Emily Sabath; Vadim Alexandrov; Daniela Brunner; Emer Leahy; Pascal Steiner; Lichuan Liu; Kimberly Scearce-Levie; Qiang Zhou

Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) used for the treatment of cutaneous T cell lymphoma (CTCL) and under consideration for other indications. In vivo studies suggest reducing HDAC function can enhance synaptic function and memory, raising the possibility that SAHA treatment could have neurological benefits. We first examined the impacts of SAHA on synaptic function in vitro using rat organotypic hippocampal brain slices. Following several days of SAHA treatment, basal excitatory but not inhibitory synaptic function was enhanced. Presynaptic release probability and intrinsic neuronal excitability were unaffected suggesting SAHA treatment selectively enhanced postsynaptic excitatory function. In addition, long-term potentiation (LTP) of excitatory synapses was augmented, while long-term depression (LTD) was impaired in SAHA treated slices. Despite the in vitro synaptic enhancements, in vivo SAHA treatment did not rescue memory deficits in the Tg2576 mouse model of Alzheimer’s disease (AD). Along with the lack of behavioral impact, pharmacokinetic analysis indicated poor brain availability of SAHA. Broader assessment of in vivo SAHA treatment using high-content phenotypic characterization of C57Bl6 mice failed to demonstrate significant behavioral effects of up to 150 mg/kg SAHA following either acute or chronic injections. Potentially explaining the low brain exposure and lack of behavioral impacts, SAHA was found to be a substrate of the blood brain barrier (BBB) efflux transporters Pgp and Bcrp1. Thus while our in vitro data show that HDAC inhibition can enhance excitatory synaptic strength and potentiation, our in vivo data suggests limited brain availability may contribute to the lack of behavioral impact of SAHA following peripheral delivery. These results do not predict CNS effects of SAHA during clinical use and also emphasize the importance of analyzing brain drug levels when interpreting preclinical behavioral pharmacology.


Xenobiotica | 2009

Preclinical assessment of the absorption, distribution, metabolism and excretion of GDC-0449 (2-chloro-N-(4-chloro-3-(pyridin-2-yl)phenyl)-4-(methylsulfonyl)benzamide), an orally bioavailable systemic Hedgehog signalling pathway inhibitor.

Harvey Wong; John Chen; B. Chou; Jason S. Halladay; J.R. Kenny; Hank La; J.C. Marsters; Emile Plise; Patrick Rudewicz; Kirk Robarge; Y. Shin; Susan Wong; C. Zhang; S.C. Khojasteh

GDC-0449 (2-chloro-N-(4-chloro-3-(pyridin-2-yl)phenyl)-4-(methylsulfonyl)benzamide) is a potent, selective Hedgehog (Hh) signalling pathway inhibitor being developed for the treatment of various cancers. The in vivo clearance of GDC-0449 was estimated to be 23.0, 4.65, 0.338, and 19.3 ml min−1 kg−1 in mouse, rat, dog and monkeys, respectively. The volume of distribution ranged from 0.490 in rats to 1.68 l kg−1 in mice. Oral bioavailability ranged from 13% in monkeys to 53% in dogs. Predicted human clearance using allometry was 0.096–0.649 ml min−1 kg−1 and the predicted volume of distribution was 0.766 l kg−1. Protein binding was extensive with an unbound fraction less than or equal to 6%, and the blood-to-plasma partition ratio ranged from 0.6 to 0.8 in all species tested. GDC-0449 was metabolically stable in mouse, rat, dog and human hepatocytes and had a more rapid turnover in monkey hepatocytes. Proposed metabolites from exploratory metabolite identification in vitro (rat, dog and human liver microsomes) and in vivo (dog and rat urine) include three primary oxidative metabolites (M1–M3) and three sequential glucuronides (M4–M6). Oxidative metabolites identified in microsomes M1 and M3 were formed primarily by P4503A4/5 (M1) and P4502C9 (M3). GDC-0449 was not a potent inhibitor of P4501A2, P4502B6, P4502D6, and P4503A4/5 with IC50 estimates greater than 20 μM. Ki’s estimated for P4502C8, P4502C9 and P4502C19 and were 6.0, 5.4 and 24 μM, respectively. An evaluation with Simcyp® suggests that GDC-0449 has a low potential of inhibiting P4502C8 and P4502C9. Furthermore, GDC-0449 (15 μM) was not a potent P-glycoprotein/ABCB1 inhibitor in MDR1-MDCK cells. Overall, GDC-0449 has an attractive preclinical profile and is currently in Phase II clinical trials.


Bioorganic & Medicinal Chemistry Letters | 2014

Reduction in lipophilicity improved the solubility, plasma-protein binding, and permeability of tertiary sulfonamide RORc inverse agonists.

Benjamin P. Fauber; Olivier René; Gladys de Leon Boenig; Brenda Burton; Yuzhong Deng; Céline Eidenschenk; Christine Everett; Alberto Gobbi; Sarah G. Hymowitz; Adam R. Johnson; Hank La; Marya Liimatta; Peter Lockey; Maxine Norman; Wenjun Ouyang; Weiru Wang; Harvey Wong

Using structure-based drug design principles, we identified opportunities to reduce the lipophilicity of our tertiary sulfonamide RORc inverse agonists. The new analogs possessed improved RORc cellular potencies with >77-fold selectivity for RORc over other nuclear receptors in our cell assay suite. The reduction in lipophilicity also led to an increased plasma-protein unbound fraction and improvements in cellular permeability and aqueous solubility.


Drug Metabolism and Disposition | 2013

Learning and confirming with preclinical studies: modeling and simulation in the discovery of GDC-0917, an inhibitor of apoptosis proteins antagonist.

Harvey Wong; Stephen E. Gould; Nageshwar Budha; Walter C. Darbonne; Edward E. Kadel; Hank La; Bruno Alicke; Jason S. Halladay; Rebecca Erickson; Chia C. Portera; Anthony W. Tolcher; Jeffery R. Infante; Michael Mamounas; John A. Flygare; Cornelis E. C. A. Hop; Wayne J. Fairbrother

The application of modeling and simulation techniques is increasingly common in the preclinical stages of the drug development process. GDC-0917 [(S)-1-((S)-2-cyclohexyl-2-((S)-2-(methylamino)propanamido)acetyl)-N-(2-(oxazol-2-yl)-4-phenylthiazol-5-yl)pyrrolidine-2-carboxamide] is a potent second-generation antagonist of inhibitor of apoptosis (IAP) proteins that is being developed for the treatment of various cancers. GDC-0917 has low to moderate clearance in the mouse (12.0 ml/min/kg), rat (27.0 ml/min/kg), and dog (15.3 ml/min/kg), and high clearance in the monkey (67.6 ml/min/kg). Accordingly, oral bioavailability was lowest in monkeys compared with other species. Based on our experience with a prototype molecule with similar structure, in vitro–in vivo extrapolation was used to predict a moderate clearance (11.5 ml/min/kg) in humans. The predicted human volume of distribution was estimated using simple allometry at 6.69 l/kg. Translational pharmacokinetic-pharmacodynamic (PK-PD) analysis using results from MDA-MB-231-X1.1 breast cancer xenograft studies and predicted human pharmacokinetics suggests that ED50 and ED90 targets can be achieved in humans using acceptable doses (72 mg and 660 mg, respectively) and under an acceptable time frame. The relationship between GDC-0917 concentrations and pharmacodynamic response (cIAP1 degradation) was characterized using an in vitro peripheral blood mononuclear cell immunoassay. Simulations of human GDC-0917 plasma concentration-time profile and cIAP1 degradation at the 5-mg starting dose in the phase 1 clinical trial agreed well with observations. This work shows the importance of leveraging information from prototype molecules and illustrates how modeling and simulation can be used to add value to preclinical studies in the early stages of the drug development process.


Journal of Medicinal Chemistry | 2014

Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation.

Emily J. Hanan; Charles Eigenbrot; Marian C. Bryan; Daniel J. Burdick; Bryan K. Chan; Yuan Chen; Jennafer Dotson; Robert Heald; Philip Stephen Jackson; Hank La; Michael Lainchbury; Shiva Malek; Hans E. Purkey; Gabriele Schaefer; Stephen Schmidt; Eileen Mary Seward; Steve Sideris; Christine Tam; Shumei Wang; Siew Kuen Yeap; Ivana Yen; JianPing Yin; Christine Yu; Inna Zilberleyb; Timothy P. Heffron

Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. We describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery of imidazo[1,5-a]pyridines and -pyrimidines as potent and selective RORc inverse agonists.

Benjamin P. Fauber; Alberto Gobbi; Kirk Robarge; Aihe Zhou; Adrian Barnard; Jianhua Cao; Yuzhong Deng; Céline Eidenschenk; Christine Everett; Arunima Ganguli; Julie Hawkins; Adam R. Johnson; Hank La; Maxine Norman; Gary Salmon; Susan Summerhill; Wenjun Ouyang; Wei Tang; Harvey Wong

The nuclear receptor (NR) retinoic acid receptor-related orphan receptor gamma (RORγ, RORc, or NR1F3) is a promising target for the treatment of autoimmune diseases. RORc is a critical regulator in the production of the pro-inflammatory cytokine interleukin-17. We discovered a series of potent and selective imidazo[1,5-a]pyridine and -pyrimidine RORc inverse agonists. The most potent compounds displayed >300-fold selectivity for RORc over the other ROR family members, PPARγ, and NRs in our cellular selectivity panel. The favorable potency, selectivity, and physiochemical properties of GNE-0946 (9) and GNE-6468 (28), in addition to their potent suppression of IL-17 production in human primary cells, support their use as chemical biology tools to further explore the role of RORc in human biology.


Journal of Medicinal Chemistry | 2015

Discovery of 1-{4-[3-Fluoro-4-((3S,6R)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)-phenyl]-piperazin-1-yl}-ethanone (GNE-3500): a Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor C (RORc or RORγ) Inverse Agonist

Benjamin P. Fauber; Olivier René; Yuzhong Deng; Jason DeVoss; Céline Eidenschenk; Christine Everett; Arunima Ganguli; Alberto Gobbi; Julie Hawkins; Adam R. Johnson; Hank La; Justin Lesch; Peter Lockey; Maxine Norman; Wenjun Ouyang; Susan Summerhill; Harvey Wong

Retinoic acid receptor-related orphan receptor C (RORc, RORγ, or NR1F3) is a nuclear receptor that plays a major role in the production of interleukin (IL)-17. Considerable efforts have been directed toward the discovery of selective RORc inverse agonists as potential treatments of inflammatory diseases such as psoriasis and rheumatoid arthritis. Using the previously reported tertiary sulfonamide 1 as a starting point, we engineered structural modifications that significantly improved human and rat metabolic stabilities while maintaining a potent and highly selective RORc inverse agonist profile. The most advanced δ-sultam compound, GNE-3500 (27, 1-{4-[3-fluoro-4-((3S,6R)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)-phenyl]-piperazin-1-yl}-ethanone), possessed favorable RORc cellular potency with 75-fold selectivity for RORc over other ROR family members and >200-fold selectivity over 25 additional nuclear receptors in a cell assay panel. The favorable potency, selectivity, in vitro ADME properties, in vivo PK, and dose-dependent inhibition of IL-17 in a PK/PD model support the evaluation of 27 in preclinical studies.

Collaboration


Dive into the Hank La's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge