Hank P. Jedema
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hank P. Jedema.
The Journal of Neuroscience | 2004
Hank P. Jedema; Anthony A. Grace
The neuropeptide corticotropin-releasing hormone (CRH) activates locus ceruleus (LC) neurons, thereby increasing norepinephrine levels throughout the CNS. Despite anatomical and physiological evidence for CRH innervation of the LC, the mechanism of CRH-evoked activation of LC neurons is unknown. Moreover, given the apparent absence of mRNA for CRH receptors in LC neurons, the exact location of action of CRH within the cerulear region is debated. Using in vitro intracellular recordings from rat brainstem, we examined whether CRH exerts a direct effect on LC neurons and which ionic currents are likely affected by CRH. We demonstrate that CRH dose-dependently increases the firing rate of LC neurons through a direct (TTX- and cadmium-insensitive) mechanism by decreasing a potassium conductance. The CRH-evoked activation of LC neurons is, at least in part, mediated by CRH1 receptors and a cAMP-dependent second messenger system. These data provide additional support that CRH functions as an excitatory neurotransmitter in the LC and the hypothesis that dysfunction of the CRH peptidergic and noradrenergic systems observed in patients with mood and anxiety disorders are functionally related.
Molecular Psychiatry | 2010
Hank P. Jedema; Peter J. Gianaros; Phillip J. Greer; Dustin D. Kerr; Shijing Liu; J.D. Higley; Stephen J. Suomi; Adam S. Olsen; Jessica N. Porter; Brian J. Lopresti; Ahmad R. Hariri; Charles W. Bradberry
A powerful convergence of genetics, neuroimaging and epidemiological research has identified the biological pathways mediating individual differences in complex behavioral processes and the related risk for disease. Orthologous genetic variation in non-human primates (NHPs) represents a unique opportunity to characterize the detailed molecular and cellular mechanisms that bias behaviorally and clinically relevant brain function. We report that a rhesus macaque orthologue of a common polymorphism of the serotonin transporter gene (rh5-HTTLPR) has strikingly similar effects on behavior and brain morphology to those in humans. Specifically, the rh5-HTTLPR (S)hort allele broadly affects cognitive choice behavior and brain morphology without observably affecting the 5-hydroxytryptamine (5-HT) transporter or 5-HT1A concentrations in vivo. Collectively, our findings indicate that 5-HTTLPR-associated behavioral effects reflect genotype-dependent biases in cortical development rather than static differences in serotonergic signaling mechanisms. Moreover, these data highlight the vast potential of NHP models in advancing our understanding of human genetic variation affecting behavior and neuropsychiatric disease liability.
The Journal of Neuroscience | 2006
Lee Ann H. Miner; Hank P. Jedema; Forrest W. Moore; Randy D. Blakely; Anthony A. Grace; Susan R. Sesack
Norepinephrine (NE) potently modulates the cognitive and affective functions of the prefrontal cortex (PFC). Deficits in NE transmission are implicated in psychiatric disorders, and antidepressant drugs that block the NE transporter (NET) effectively treat these conditions. Our initial ultrastructural studies of the rat PFC revealed that most NE axons (85–90%) express NET primarily within the cytoplasm and lack detectable levels of the synthetic enzyme tyrosine hydroxylase (TH). In contrast, the remaining 10–15% of PFC NE axons exhibit predominantly plasmalemmal NET and evident TH immunoreactivity. These unusual characteristics suggest that most PFC NE axons have an unrecognized, latent capacity to enhance the synthesis and recovery of transmitter. In the present study, we used dual-labeling immunocytochemistry and electron microscopy to examine whether chronic cold stress, a paradigm that persistently increases NE activity, would trigger cellular changes consistent with this hypothesis. After chronic stress, neither the number of profiles exhibiting NET labeling nor their size was changed. However, the proportion of plasmalemmal NET nearly doubled from 29% in control animals to 51% in stressed rats. Moreover, the expression of detectable TH in NET-labeled axons increased from only 13% of profiles in control rats to 32% of profiles in stressed animals. Despite the consistency of these findings, the magnitude of the changes varied across individual rats. These data represent the first demonstration of activity-dependent trafficking of NET and expression of TH under physiological conditions and have important implications for understanding the pathophysiology and treatment of stress-related affective disorders.
The Journal of Neuroscience | 2011
Jessica N. Porter; Adam S. Olsen; Kate Gurnsey; Brian P. Dugan; Hank P. Jedema; Charles W. Bradberry
Cocaine users display a wide range of cognitive impairments. Because treatment outcome is dependent on baseline cognitive ability, it is clinically important to understand the underlying neurobiology of these deficits. Therefore, it is crucial to determine whether cocaine exposure by itself is an etiological factor and, if so, to determine the overall nature of cognitive deficits associated with cocaine use. This will help to guide therapeutic approaches that address cognitive components of cocaine use to improve treatment outcome. We used rhesus monkeys in a longitudinal study in which 14 animals were characterized before assignment to matched control (n = 6) and cocaine self-administration (n = 8) groups. Self-administration took place on 4 consecutive days/week over 9 months, with a maximum (and typical) daily cumulative intake of 3.0 mg/kg. Weekly cognitive assessments (total of 36) were conducted after a 72 h drug-free period. We used a stimulus discrimination task with reversal to evaluate associative learning and the cognitive control/flexibility needed to adapt to changes in reward contingencies. After extended self-administration, initial accuracy on the stimulus discrimination indicated intact associative learning. However, animals were impaired at maintaining high levels of accuracy needed to reach criterion and initiate the reversal. Increasing the reward contrast between stimuli permitted evaluation of reversal performance and revealed striking deficits in the cocaine group. Impairments in visual working memory were also observed using a delayed match-to-sample task. These results suggest a combination of generalized, possibly attentional, impairments, along with a more specific cognitive control impairment implicating orbitofrontal cortex dysfunction.
Biological Psychiatry | 2001
Hank P. Jedema; Janet M. Finlay; Alan F. Sved; Anthony A. Grace
BACKGROUND Chronic stress exposure can produce sensitization of norepinephrine release in the forebrain in response to subsequent stressors. Furthermore, the increase in norepinephrine release in response to the stress-related peptide corticotropin-releasing hormone (CRH) is potentiated by prior chronic stress exposure. To explore possible mechanisms underlying these alterations in norepinephrine release, we examined the effect of chronic stress on the electrophysiologic activity of locus coeruleus (LC) neurons in response to centrally applied CRH. METHODS Single-unit recordings of LC neurons in halothane-anesthetized rats were used to compare the effect of intraventricular administration of CRH (0.3-3.0 microg) in control and previously cold-exposed (2 weeks at 5 degrees C) rats. RESULTS The CRH-evoked increase in LC neuron activity was enhanced following chronic cold exposure, without alteration in basal activity of LC neurons. The enhanced CRH-evoked activation was apparent at higher doses of CRH but not at lower ones, resulting in an increased slope of the dose-response curve for CRH in previously cold-exposed rats. CONCLUSIONS These data, in combination with previous data, suggest that the sensitivity of LC neurons to excitatory inputs is increased following chronic cold exposure. The altered functional capacity of LC neurons in rats after continuous cold exposure may represent an experimental model to examine the role of central noradrenergic neurons in anxiety and mood disorders.
Brain Research | 1999
Hank P. Jedema; Alan F. Sved; Michael J. Zigmond; Janet M. Finlay
Previously, we demonstrated that continuous exposure of rats to cold (5 degrees C) for 2-3 weeks potentiates the increase in extracellular norepinephrine in the medial prefrontal cortex produced by acute tail shock. In the present study, we used in vivo microdialysis to examine whether this sensitization of evoked norepinephrine release also occurs in the medial prefrontal cortex following exposure to other chronic stress protocols. Rats exposed to 30 min of intermittent foot shock (0.6 mA) each day for 14 days, did not exhibit a greater increase in extracellular norepinephrine in response to acute tail shock. To determine whether this discrepancy between cold exposure and foot shock might be related to differences in the nature or the pattern of exposure to the chronic stressor, we also examined the effect of intermittent exposure to cold or continuous exposure to a foot shock protocol on tail shock-evoked norepinephrine release. Sensitized norepinephrine release did not develop following either intermittent exposure to cold (5 degrees C; 4 h/day for 14 days) or continuous exposure to a foot shock protocol (0.6 mA trains at random intervals 24 h/day for 14 days), suggesting that both the nature of the stressor as well as the pattern of exposure to the chronic stressor play a role in the development of sensitized norepinephrine release.
Journal of Neurochemistry | 2002
Janet M. Finlay; Hank P. Jedema; Ariel D. Rabinovic; Michael J. Mana; Michael J. Zigmond; Alan F. Sved
Abstract: We have previously demonstrated that exposing rats to cold (5°C) for 3–4 weeks potentiates the increase in extracellular norepinephrine (NE) in the medial prefrontal cortex produced by acute tail shock. In the present study, we used microdialysis to determine the duration of cold exposure required to produce this sensitization and explored the mechanism of the phenomenon. Tail shock elicited a twofold greater increase in extracellular NE in the medial prefrontal cortex of rats exposed to cold for 2 weeks than in naive control rats or in rats exposed to cold for 1 week and tested either immediately or after a 2‐week delay. Local infusion of 10 µMd‐amphetamine or 30 mM K+ increased extracellular NE in the medial prefrontal cortex (∼350 and 190%, respectively) comparably in control rats and rats exposed to cold for 3 weeks. In contrast, intraventricular administration of 3.0 µg of corticotropin‐releasing hormone increased extracellular NE in the medial prefrontal cortex by 65% in rats exposed to cold for 2 weeks, but only 35% in control rats. These results indicate that an enhanced responsiveness of noradrenergic neurons to acute tail shock (1) requires ∼2 weeks of cold exposure to develop and (2) may be mediated by a change at the level of the noradrenergic cell bodies rather than the nerve terminals.
Neuropsychopharmacology | 2003
Hank P. Jedema; Anthony A. Grace
Chronic stress exposure can alter central noradrenergic function. Previously, we reported that in chronically cold-exposed rats the release of norepinephrine and electrophysiological activation of locus coeruleus (LC) neurons is enhanced in response to multiple excitatory stimuli without alterations in basal activity. In the present studies, we used in vitro intracellular recording techniques to explore the effect of chronic cold exposure on the basal and evoked electrophysiological properties of LC neurons in horizontal slices of the rat brainstem. Consistent with our findings from in vivo experiments, chronic cold exposure did not affect basal firing rate. Furthermore, gross morphology of LC neurons and spike waveform characteristics were similar in slices from control and previously cold-exposed rats. However, excitability in response to intracellular current injection and input resistance were larger in slices from previously cold-exposed rats. In addition, the accommodation of spike firing in response to sustained current injection was smaller and the period of postactivation inhibition appeared to be less in LC neurons from cold-exposed rats. These data demonstrate that the stress-evoked sensitization of LC neurons observed in vivo is at least in part maintained in the slice preparation and suggest that alterations in electrophysiological properties of LC neurons contribute to the chronic stress-induced sensitization of central noradrenergic function observed in vivo. Furthermore, the present data suggest that an alteration in autoinhibitory control of LC activity is involved in the chronic stress-induced alterations. The enhanced functional capacity of LC neurons following cold exposure of rats may represent a unique model to study the mechanisms underlying the alterations in central noradrenergic function observed in humans afflicted with mood and anxiety disorders.
Molecular Psychiatry | 2014
Narendran R; Hank P. Jedema; Brian J. Lopresti; Mason Ns; Gurnsey K; Ruszkiewicz J; Chen Cm; Deuitch L; Frankle Wg; Charles W. Bradberry
In a recent human positron emission tomography (PET) study we demonstrated the ability to detect amphetamine-induced dopamine (DA) release in the prefrontal cortex as a reduction in the binding of the DA D2/3 radioligand [11C]FLB 457. A key requirement for validating this paradigm for use in clinical studies is demonstrating that the changes in [11C]FLB 457 binding observed with PET following amphetamine are related to changes in dialysate DA concentration as measured with microdialysis. Microdialysis and PET experiments were performed to compare, in five rhesus monkeys, amphetamine-induced DA release and [11C]FLB 457 displacement in the frontal cortex after three doses of amphetamine (0.3 mg kg−1, 0.5 mg kg−1 and 1.0 mg kg−1). Amphetamine led to a significant dose-dependent increase in dialysate (0.3 mg kg−1: 999±287%; 0.5 mg kg−1: 1320±432%; 1.0 mg kg−1: 2355±1026%) as measured with microdialysis and decrease in [11C]FLB 457 binding potential (BPND, 0.3 mg kg−1: −6±6%; 0.5 mg kg−1: −16±4%; 1.0 mg kg−1: −24±2%) as measured with PET. The relationship between amphetamine-induced peak ΔDA and Δ[11C]FLB 457 BPND in the frontal cortex was linear. The results of this study clearly demonstrate that the magnitude of dialysate DA release is correlated with the magnitude of the reduction in [11C]FLB 457 BPND in the frontal cortex. The use of the [11C]FLB 457-amphetamine imaging paradigm in humans should allow for characterization of prefrontal cortical DA release in neuropsychiatric disorders such as schizophrenia and addiction.
European Journal of Neuroscience | 2008
Hank P. Jedema; Stephen J. Gold; Guillermo Gonzalez-Burgos; Alan F. Sved; Ben J. Tobe; Theodore G. Wensel; Anthony A. Grace
Chronic stress exposure alters the central noradrenergic neurons originating from the locus coeruleus (LC). Previously, we demonstrated that evoked increases in the firing rate of LC neurons and their release of norepinephrine are enhanced following chronic cold exposure. In the present studies, we tested the hypothesis that reduced feedback inhibition of LC neurons might underlie these alterations in LC activity by examining the effect of α2‐autoreceptor stimulation on LC activity in chronically stressed rats using in vivo and in vitro single unit recordings. Given that regulators of G‐protein signaling (RGS) proteins can impact the coupling of α2‐autoreceptors to downstream signaling cascades, we also explored the expression of several RGS proteins following chronic stress exposure. We observed that the α2‐autoreceptor‐evoked inhibition of LC neurons was reduced and that the expression of RGS7 was increased following chronic stress exposure. Finally, we demonstrated that intracellular administration of RGS7 via patch clamp electrodes mimicked the stress‐induced decrease in clonidine‐evoked autoreceptor‐mediated inhibition. These novel data provide a mechanism to explain how chronic stress‐induced alterations in receptor coupling can result in changes in α2‐autoreceptor control of noradrenergic function throughout the central nervous system, potentially leading to alterations in anxiety‐related behaviors, and may suggest novel therapeutic targets for the treatment of mood and anxiety disorders.