Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanka Venselaar is active.

Publication


Featured researches published by Hanka Venselaar.


The New England Journal of Medicine | 2009

Human Dectin-1 Deficiency and Mucocutaneous Fungal Infections

Bart Ferwerda; Gerben Ferwerda; Theo S. Plantinga; Janet A. Willment; Annemiek B. van Spriel; Hanka Venselaar; Clara C. Elbers; Melissa D. Johnson; Alessandra Cambi; Cristal Huysamen; Liesbeth Jacobs; Trees Jansen; Karlijn Verheijen; Laury Masthoff; Servaas A. Morré; Gert Vriend; David L. Williams; John R. Perfect; Leo A. B. Joosten; Cisca Wijmenga; Jos W. M. van der Meer; Gosse J. Adema; Bart Jan Kullberg; Gordon D. Brown; Mihai G. Netea

Mucocutaneous fungal infections are typically found in patients who have no known immune defects. We describe a family in which four women who were affected by either recurrent vulvovaginal candidiasis or onychomycosis had the early-stop-codon mutation Tyr238X in the beta-glucan receptor dectin-1. The mutated form of dectin-1 was poorly expressed, did not mediate beta-glucan binding, and led to defective production of cytokines (interleukin-17, tumor necrosis factor, and interleukin-6) after stimulation with beta-glucan or Candida albicans. In contrast, fungal phagocytosis and fungal killing were normal in the patients, explaining why dectin-1 deficiency was not associated with invasive fungal infections and highlighting the specific role of dectin-1 in human mucosal antifungal defense.


Nature Genetics | 2011

Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis

Ingrid van de Laar; Rogier A. Oldenburg; Gerard Pals; Jolien W. Roos-Hesselink; Bianca M. de Graaf; Judith M.A. Verhagen; Yvonne M. Hoedemaekers; Rob Willemsen; Lies-Anne Severijnen; Hanka Venselaar; Gert Vriend; Peter M. T. Pattynama; Margriet J. Collee; Danielle Majoor-Krakauer; Don Poldermans; Ingrid M.E. Frohn-Mulder; Dimitra Micha; Janneke Timmermans; Yvonne Hilhorst-Hofstee; Sita M. A. Bierma-Zeinstra; Patrick J. Willems; Johan M. Kros; Edwin H. G. Oei; Ben A. Oostra; Marja W. Wessels; Aida M. Bertoli-Avella

Thoracic aortic aneurysms and dissections are a main feature of connective tissue disorders, such as Marfan syndrome and Loeys-Dietz syndrome. We delineated a new syndrome presenting with aneurysms, dissections and tortuosity throughout the arterial tree in association with mild craniofacial features and skeletal and cutaneous anomalies. In contrast with other aneurysm syndromes, most of these affected individuals presented with early-onset osteoarthritis. We mapped the genetic locus to chromosome 15q22.2–24.2 and show that the disease is caused by mutations in SMAD3. This gene encodes a member of the TGF-β pathway that is essential for TGF-β signal transmission. SMAD3 mutations lead to increased aortic expression of several key players in the TGF-β pathway, including SMAD3. Molecular diagnosis will allow early and reliable identification of cases and relatives at risk for major cardiovascular complications. Our findings endorse the TGF-β pathway as the primary pharmacological target for the development of new treatments for aortic aneurysms and osteoarthritis.


BMC Bioinformatics | 2010

Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces

Hanka Venselaar; Tim A. H. te Beek; Remko Kuipers; Maarten L. Hekkelman; Gert Vriend

BackgroundMany newly detected point mutations are located in protein-coding regions of the human genome. Knowledge of their effects on the proteins 3D structure provides insight into the proteins mechanism, can aid the design of further experiments, and eventually can lead to the development of new medicines and diagnostic tools.ResultsIn this article we describe HOPE, a fully automatic program that analyzes the structural and functional effects of point mutations. HOPE collects information from a wide range of information sources including calculations on the 3D coordinates of the protein by using WHAT IF Web services, sequence annotations from the UniProt database, and predictions by DAS services. Homology models are built with YASARA. Data is stored in a database and used in a decision scheme to identify the effects of a mutation on the proteins 3D structure and function. HOPE builds a report with text, figures, and animations that is easy to use and understandable for (bio)medical researchers.ConclusionsWe tested HOPE by comparing its output to the results of manually performed projects. In all straightforward cases HOPE performed similar to a trained bioinformatician. The use of 3D structures helps optimize the results in terms of reliability and details. HOPEs results are easy to understand and are presented in a way that is attractive for researchers without an extensive bioinformatics background.


Journal of Medical Genetics | 2009

Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype

Tjitske Kleefstra; W.A.G. van Zelst-Stams; Willy M. Nillesen; Valérie Cormier-Daire; Gunnar Houge; Nicola Foulds; M.F. van Dooren; Marjolein H. Willemsen; Rolph Pfundt; Anne Turner; Meredith Wilson; Julie McGaughran; Anita Rauch; Martin Zenker; Margaret P Adam; M Innes; C Davies; A González-Meneses López; R Casalone; A Weber; Louise Brueton; A Delicado Navarro; M Palomares Bralo; Hanka Venselaar; S P A Stegmann; Helger G. Yntema; H. van Bokhoven; Han G. Brunner

Background: The 9q subtelomeric deletion syndrome (9qSTDS) is clinically characterised by moderate to severe mental retardation, childhood hypotonia and facial dysmorphisms. In addition, congenital heart defects, urogenital defects, epilepsy and behavioural problems are frequently observed. The syndrome can be either caused by a submicroscopic 9q34.3 deletion or by intragenic EHMT1 mutations leading to haploinsufficiency of the EHMT1 gene. So far it has not been established if and to what extent other genes in the 9q34.3 region contribute to the phenotype observed in deletion cases. This study reports the largest cohort of 9qSTDS cases so far. Methods and results: By a multiplex ligation dependent probe amplification (MLPA) approach, the authors identified and characterised 16 novel submicroscopic 9q deletions. Direct sequence analysis of the EHMT1 gene in 24 patients exhibiting the 9qSTD phenotype without such deletion identified six patients with an intragenic EHMT1 mutation. Five of these mutations predict a premature termination codon whereas one mutation gives rise to an amino acid substitution in a conserved domain of the protein. Conclusions: The data do not provide any evidence for phenotype–genotype correlations between size of the deletions or type of mutations and severity of clinical features. Therefore, the authors confirm the EHMT1 gene to be the major determinant of the 9qSTDS phenotype. Interestingly, five of six patients who had reached adulthood had developed severe psychiatric pathology, which may indicate that EHMT1 haploinsufficiency is associated with neurodegeneration in addition to neurodevelopmental defect.


Cell Metabolism | 2010

Acyl-CoA Dehydrogenase 9 Is Required for the Biogenesis of Oxidative Phosphorylation Complex I

Jessica Nouws; Leo Nijtmans; Sander M. Houten; Mariël van den Brand; Martijn A. Huynen; Hanka Venselaar; Saskia J.G. Hoefs; Jolein Gloerich; Jonathan B. Kronick; Timothy P Hutchin; Peter H.G.M. Willems; Richard J. Rodenburg; Lambert van den Heuvel; Jan A.M. Smeitink; Rutger O. Vogel

Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified member of the acyl-CoA dehydrogenase family. It closely resembles very long-chain acyl-CoA dehydrogenase (VLCAD), involved in mitochondrial beta oxidation of long-chain fatty acids. Contrary to its previously proposed involvement in fatty acid oxidation, we describe a role for ACAD9 in oxidative phosphorylation. ACAD9 binds complex I assembly factors NDUFAF1 and Ecsit and is specifically required for the assembly of complex I. Furthermore, ACAD9 mutations result in complex I deficiency and not in disturbed long-chain fatty acid oxidation. This strongly contrasts with its evolutionary ancestor VLCAD, which we show is not required for complex I assembly and clearly plays a role in fatty acid oxidation. Our results demonstrate that two closely related metabolic enzymes have diverged at the root of the vertebrate lineage to function in two separate mitochondrial metabolic pathways and have clinical implications for the diagnosis of complex I deficiency.


American Journal of Human Genetics | 2009

Mutations in NDUFAF3 (C3ORF60), Encoding an NDUFAF4 (C6ORF66)-Interacting Complex I Assembly Protein, Cause Fatal Neonatal Mitochondrial Disease

Ann Saada; Rutger O. Vogel; Saskia J.G. Hoefs; Mariël van den Brand; Hans Wessels; Peter H.G.M. Willems; Hanka Venselaar; Avraham Shaag; Flora Barghuti; Orit Reish; Mordechai Shohat; Martijn A. Huynen; Jan A.M. Smeitink; Lambert van den Heuvel; Leo Nijtmans

Mitochondrial complex I deficiency is the most prevalent and least understood disorder of the oxidative phosphorylation system. The genetic cause of many cases of isolated complex I deficiency is unknown because of insufficient understanding of the complex I assembly process and the factors involved. We performed homozygosity mapping and gene sequencing to identify the genetic defect in five complex I-deficient patients from three different families. All patients harbored mutations in the NDUFAF3 (C3ORF60) gene, of which the pathogenic nature was assessed by NDUFAF3-GFP baculovirus complementation in fibroblasts. We found that NDUFAF3 is a genuine mitochondrial complex I assembly protein that interacts with complex I subunits. Furthermore, we show that NDUFAF3 tightly interacts with NDUFAF4 (C6ORF66), a protein previously implicated in complex I deficiency. Additional gene conservation analysis links NDUFAF3 to bacterial-membrane-insertion gene cluster SecF/SecD/YajC and to C8ORF38, also implicated in complex I deficiency. These data not only show that NDUFAF3 mutations cause complex I deficiency but also relate different complex I disease genes by the close cooperation of their encoded proteins during the assembly process.


Nature Genetics | 2012

Dominant missense mutations in ABCC9 cause Cantú syndrome

Magdalena Harakalova; Jeske van Harssel; Paulien A. Terhal; Stef van Lieshout; Karen Duran; Ivo Renkens; David J. Amor; Louise C. Wilson; Edwin P. Kirk; Claire Turner; Debbie Shears; Sixto García-Miñaúr; Melissa Lees; Alison Ross; Hanka Venselaar; Gert Vriend; Hiroki Takanari; Martin B. Rook; Marcel A.G. van der Heyden; Folkert W. Asselbergs; Hans M Breur; Marielle Swinkels; Ingrid Scurr; Sarah F. Smithson; Nine V.A.M. Knoers; Jasper J. van der Smagt; Isaac J. Nijman; Wigard P. Kloosterman; Mieke M. van Haelst; Gijs van Haaften

Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (KATP) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the KATP channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.


Journal of the American College of Cardiology | 2015

Mutations in a TGF-β Ligand, TGFB3, Cause Syndromic Aortic Aneurysms and Dissections

Aida M. Bertoli-Avella; Elisabeth Gillis; Hiroko Morisaki; J.M.A. Verhagen; Bianca M. de Graaf; Gerarda van de Beek; Elena Gallo; Boudewijn P.T. Kruithof; Hanka Venselaar; Loretha Myers; Steven Laga; Alexander J. Doyle; Gretchen Oswald; Gert W A van Cappellen; Itaru Yamanaka; Robert M. van der Helm; Berna Beverloo; Annelies de Klein; Luba M. Pardo; Martin Lammens; Christina Evers; Koenraad Devriendt; Michiel Dumoulein; Janneke Timmermans; Hennie T. Brüggenwirth; Frans W. Verheijen; Inez Rodrigus; Gareth Baynam; Marlies Kempers; Johan Saenen

Background Aneurysms affecting the aorta are a common condition associated with high mortality as a result of aortic dissection or rupture. Investigations of the pathogenic mechanisms involved in syndromic types of thoracic aortic aneurysms, such as Marfan and Loeys-Dietz syndromes, have revealed an important contribution of disturbed transforming growth factor (TGF)-β signaling. Objectives This study sought to discover a novel gene causing syndromic aortic aneurysms in order to unravel the underlying pathogenesis. Methods We combined genome-wide linkage analysis, exome sequencing, and candidate gene Sanger sequencing in a total of 470 index cases with thoracic aortic aneurysms. Extensive cardiological examination, including physical examination, electrocardiography, and transthoracic echocardiography was performed. In adults, imaging of the entire aorta using computed tomography or magnetic resonance imaging was done. Results Here, we report on 43 patients from 11 families with syndromic presentations of aortic aneurysms caused by TGFB3 mutations. We demonstrate that TGFB3 mutations are associated with significant cardiovascular involvement, including thoracic/abdominal aortic aneurysm and dissection, and mitral valve disease. Other systemic features overlap clinically with Loeys-Dietz, Shprintzen-Goldberg, and Marfan syndromes, including cleft palate, bifid uvula, skeletal overgrowth, cervical spine instability and clubfoot deformity. In line with previous observations in aortic wall tissues of patients with mutations in effectors of TGF-β signaling (TGFBR1/2, SMAD3, and TGFB2), we confirm a paradoxical up-regulation of both canonical and noncanonical TGF-β signaling in association with up-regulation of the expression of TGF-β ligands. Conclusions Our findings emphasize the broad clinical variability associated with TGFB3 mutations and highlight the importance of early recognition of the disease because of high cardiovascular risk.


Human Mutation | 2010

Overview of the Mutation Spectrum in Familial Exudative Vitreoretinopathy and Norrie Disease with Identification of 21 Novel Variants in FZD4, LRP5, and NDP

Konstantinos Nikopoulos; Hanka Venselaar; Rob W.J. Collin; Rosa Riveiro-Alvarez; F. Nienke Boonstra; Johanna M. M. Hooymans; Arijit Mukhopadhyay; Deborah J. Shears; Marleen van Bers; Ilse J. de Wijs; Anthonie J. van Essen; Rolf H. Sijmons; Mauk A.D. Tilanus; C. Erik van Nouhuys; C. Ayuso; Lies H. Hoefsloot; Frans P.M. Cremers

Wnt signaling is a crucial component of the cell machinery orchestrating a series of physiological processes such as cell survival, proliferation, and migration. Among the plethora of roles that Wnt signaling plays, its canonical branch regulates eye organogenesis and angiogenesis. Mutations in the genes encoding the low density lipoprotein receptor protein 5 (LRP5) and frizzled 4 (FZD4), acting as coreceptors for Wnt ligands, cause familial exudative vitreoretinopathy (FEVR). Moreover, mutations in the gene encoding NDP, a ligand for these Wnt receptors, cause Norrie disease and FEVR. Both FEVR and Norrie disease share similar phenotypic characteristics, including abnormal vascularization of the peripheral retina and formation of fibrovascular masses in the eye that can lead to blindness. In this mutation update, we report 21 novel variants for FZD4, LRP5, and NDP, and discuss the putative functional consequences of missense mutations. In addition, we provide a comprehensive overview of all previously published variants in the aforementioned genes and summarize the phenotypic characteristics in mouse models carrying mutations in the orthologous genes. The increasing molecular understanding of Wnt signaling, related to ocular development and blood supply, offers more tools for accurate disease diagnosis that may be important in the development of therapeutic interventions. Hum Mutat 31:656–666, 2010.


American Journal of Human Genetics | 2008

Mutations of ESRRB Encoding Estrogen-Related Receptor Beta Cause Autosomal-Recessive Nonsyndromic Hearing Impairment DFNB35

Rob W.J. Collin; Ersan Kalay; Muhammad Tariq; Theo A. Peters; Bert van der Zwaag; Hanka Venselaar; Jaap Oostrik; Kwanghyuk Lee; Zubair M. Ahmed; Refik Caylan; Yun Li; Henk A. Spierenburg; Erol Eyupoglu; Angelien Heister; Saima Riazuddin; Elif Bahat; Muhammad Ansar; Selçuk Arslan; Bernd Wollnik; Han G. Brunner; C.W.R.J. Cremers; Ahmet Karagüzel; Wasim Ahmad; Frans P.M. Cremers; Gert Vriend; Thomas B. Friedman; Sheikh Riazuddin; Suzanne M. Leal; Hannie Kremer

In a large consanguineous family of Turkish origin, genome-wide homozygosity mapping revealed a locus for recessive nonsyndromic hearing impairment on chromosome 14q24.3-q34.12. Fine mapping with microsatellite markers defined the critical linkage interval to a 18.7 cM region flanked by markers D14S53 and D14S1015. This region partially overlapped with the DFNB35 locus. Mutation analysis of ESRRB, a candidate gene in the overlapping region, revealed a homozygous 7 bp duplication in exon 8 in all affected individuals. This duplication results in a frame shift and premature stop codon. Sequence analysis of the ESRRB gene in the affected individuals of the original DFNB35 family and in three other DFNB35-linked consanguineous families from Pakistan revealed four missense mutations. ESRRB encodes the estrogen-related receptor beta protein, and one of the substitutions (p.A110V) is located in the DNA-binding domain of ESRRB, whereas the other three are substitutions (p.L320P, p.V342L, and p.L347P) located within the ligand-binding domain. Molecular modeling of this nuclear receptor showed that the missense mutations are likely to affect the structure and stability of these domains. RNA in situ hybridization in mice revealed that Esrrb is expressed during inner-ear development, whereas immunohistochemical analysis showed that ESRRB is present postnatally in the cochlea. Our data indicate that ESRRB is essential for inner-ear development and function. To our knowledge, this is the first report of pathogenic mutations of an estrogen-related receptor gene.

Collaboration


Dive into the Hanka Venselaar's collaboration.

Top Co-Authors

Avatar

Gert Vriend

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Christian Gilissen

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Han G. Brunner

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Lies H. Hoefsloot

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Joris A. Veltman

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan A.M. Smeitink

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Rob W.J. Collin

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Edwin P. Kirk

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge