Hanke van der Wel
University of Oklahoma Health Sciences Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hanke van der Wel.
Genome Biology | 2011
Richard Sucgang; Alan Kuo; Xiangjun Tian; William Salerno; Anup Parikh; Christa L. Feasley; Eileen Dalin; Hank Tu; Eryong Huang; Kerrie Barry; Erika Lindquist; Harris Shapiro; David Bruce; Jeremy Schmutz; Asaf Salamov; Petra Fey; Pascale Gaudet; Christophe Anjard; M. Madan Babu; Siddhartha Basu; Yulia A. Bushmanova; Hanke van der Wel; Mariko Katoh-Kurasawa; Christopher Dinh; Pedro M. Coutinho; Tamao Saito; Marek Eliáš; Pauline Schaap; Robert R. Kay; Bernard Henrissat
BackgroundThe social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum.ResultsWe have produced a draft genome sequence of another group dictyostelid, Dictyosteliumpurpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict.ConclusionsThe findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.
Development | 2007
Christopher M. West; Hanke van der Wel; Zhuo A. Wang
Development in multicellular organisms is subject to both environmental and internal signals. In Dictyostelium, starvation induces amoebae to form migratory slugs that translocate from subterranean areas to exposed sites, where they culminate to form sessile fruiting bodies. Culmination, thought to be regulated by anterior tip cells, is selectively suppressed by mild hypoxia by a mechanism that can be partially overridden by another environmental signal, overhead light, or genetic activation of protein kinase A. Dictyostelium expresses, in all cells, an O2-dependent prolyl 4-hydroxylase (P4H1) required for O-glycosylation of Skp1, a subunit of E3SCF-Ub-ligases. P4H1-null cells differentiate the basic pre-stalk and pre-spore cell types but exhibit a selectively increased O2 requirement for culmination, from ∼12% to near or above ambient (21%) levels. Overexpression of P4H1 reduces the O2 requirement to<5%. The requirement for P4H1 can be met by forced expression of the active enzyme in either pre-stalk (anterior) or pre-spore (posterior) cells, or replaced by protein kinase A activation or addition of small numbers of wild-type cells. P4H1-expressing cells accumulate at the anterior end, suggesting that P4H1 enables transcellular signaling by the tip. The evidence provides novel genetic support for the animal-derived O2-sensor model of prolyl 4-hydroxylase function, in an organism that lacks the canonical HIFα transcriptional factor subunit substrate target that is a feature of animal hypoxic signaling.
Journal of Biological Chemistry | 2005
Hanke van der Wel; Altan Ercan; Christopher M. West
Skp1 is a cytoplasmic and nuclear protein of eukaryotes best known as an adaptor in SCF ubiquitin-protein isopeptide ligases. In Dictyostelium, Skp1 is subject to 4-hydroxylation at Pro143 and subsequent O-glycosylation by α-linked GlcNAc and other sugars. Soluble cytosolic extracts have Skp1 prolyl 4-hydroxylase (P4H) activity, which can be measured based on hydroxylation-dependent transfer of [3H]GlcNAc to recombinant Skp1 by recombinant (Skp1-protein)-hydroxyproline α-N-acetyl-d-glucosaminyltransferase. The Dictyostelium Skp1 P4H gene (phyA) was predicted using a bioinformatics approach, and the expected enzyme activity was confirmed by expression of phyA cDNA in Escherichia coli. The purified recombinant enzyme (P4H1) was dependent on physiological concentrations of O2, α-ketoglutarate, and ascorbate and was inhibited by CoCl2, 3,4-dihydroxybenzoate, and 3,4-dihydroxyphenyl acetate, as observed for known animal cytoplasmic P4Hs of the hypoxia-inducible factor-α (HIFα) class. Overexpression of phyA cDNA in Dictyostelium yielded increased enzyme activity in a soluble cytosolic extract. Disruption of the phyA locus by homologous recombination resulted in loss of detectable activity in extracts and blocked hydroxylation-dependent glycosylation of Skp1 based on molecular weight analysis by SDS-PAGE, demonstrating a requirement for P4H1 in vivo. The sequence and functional similarities of P4H1 to animal HIFα-type P4Hs suggest that hydroxylation of Skp1 may, like that of animal HIFα, be regulated by availability of O2, α-ketoglutarate, and ascorbate, which might exert novel control over Skp1 glycosylation.
Journal of Biological Chemistry | 1999
Patana Teng-umnuay; Hanke van der Wel; Christopher M. West
Skp1 is a cytoplasmic and nuclear protein required for the ubiquitination of cell cycle regulatory proteins and transcriptional factors. In Dictyostelium, Skp1 is modified by a linear pentasaccharide, Galα1–6Galα1-Fucα1–2Galβ1–3GlcNAc, attached to a hydroxyproline (HyPro) residue at position 143. To study the formation of the GlcNAc-HyPro linkage, an assay was developed for the transfer of [3H]GlcNAc from UDP-[3H]GlcNAc to Skp1-HyPro-143 or a synthetic Skp1 4-HyPro peptide. The cytosolic but not the particulate fraction of the cell mediated transfer in a time-, concentration-, and HyPro-dependent fashion. Incorporated radioactivity was alkali-resistant and was recovered as GlcNH2 after acid hydrolysis, consistent with linkage of GlcNAc to HyPro. The GlcNAc-transferase activity was purified 130,000-fold as a single component with a recovery of 5%. Key to the purification was the synthesis of a novel affinity resin linking UDP-GlcNAc at its 5-uridyl position. The purified activity had an apparent M r of ∼45,000 by gel filtration, required dithiothreitol and a divalent cation, and consisted predominantly of a M r 51,000 band after SDS-polyacrylamide gel electrophoresis that was photoaffinity labeled with 5-125I-[3-(p-azidosalicylamido)-1-propenyl-UDP-GlcNAc in a UDP-GlcNAc-sensitive fashion. Its apparent K m values for UDP-GlcNAc and Skp1 were submicromolar. The presence of the enzyme in the cytosolic fraction, its dependence on a reducing environment, and its high affinity for UDP-GlcNAc strongly suggest that Skp1 is glycosylated by a HyPro GlcNAc-transferase that resides in the cytoplasm.
Journal of Biological Chemistry | 1996
Christopher M. West; Toby Scott-Ward; Patana Teng-umnuay; Hanke van der Wel; Emil Kozarov; Ann Huynh
A novel fucosyltransferase (cFTase) activity has been enriched over 106-fold from the cytosolic compartment of Dictyostelium based on transfer of [3H]fucose from GDP-[3H]fucose to Galβ1,3GlcNAcβ-paranitrophenyl (paranitrophenyl-lacto-N-bioside or pNP-LNB). The activity behaved as a single component during purification over DEAE-, phenyl-, Reactive Blue-4-, GDP-adipate-, GDP-hexanolamine-, and Superdex gel filtration resins. The purified activity possessed an apparent M of 95 × 103, was Mg-dependent with a neutral pH optimum, and exhibited a K for GDP-fucose of 0.34 μM, a K for pNP-LNB of 0.6 mM, and a V for pNP-LNB of 620 nmol/min/mg protein. SDS-polyacrylamide gel electrophoresis analysis of the Superdex elution profile identified a polypeptide with an apparent M of 85 × 103, which coeluted with the cFTase activity and could be specifically photolabeled with the donor substrate inhibitor GDP-hexanolaminyl-azido-I-salicylate. Based on substate analogue studies, exoglycosidase digestions, and co-chromatography with fucosylated standards, the product of the reaction with pNP-LNB was Fucα1, 2Galβ1,3GlcNAcβ-pNP. The cFTase preferred substrates with a Galβ1,3 linkage, and thus its acceptor substrate specificity resembles the human Secretor-type α1,2-FTase. Afucosyl isoforms of the FP21 glycoprotein, GP21-I and GP21-II, were purified from the cytosol of a Dictyostelium mutant and found to be substrates for the cFTase, which exhibited an apparent K of 0.21 μM and an apparent V of 460 nmol/min/mg protein toward GP21-II. The highly purified cFTase was inhibited by the reaction products Fucα1,2Galβ1,3GlcNAcβ-pNP and FP21-II. FP21-I and recombinant FP21 were not inhibitory, suggesting that acceptor substrate specificity is based primarily on carbohydrate recognition. A cytosolic location for this step of FP21 glycosylation is implied by the isolation of the cFTase from the cytosolic fraction, its high affinity for its substrates, and its failure to be detected in crude membrane preparations.
Biochimica et Biophysica Acta | 2010
Christopher M. West; Zhuo A. Wang; Hanke van der Wel
The soil amoeba Dictyostelium is an obligate aerobe that monitors O(2) for informational purposes in addition to utilizing it for oxidative metabolism. Whereas low O(2) suffices for proliferation, a higher level is required for slugs to culminate into fruiting bodies, and O(2) influences slug polarity, slug migration, and cell-type proportioning. Dictyostelium expresses a cytoplasmic prolyl 4-hydroxylase (P4H1) known to mediate O(2)-sensing in animals, but lacks HIFalpha, a major hydroxylation target whose accumulation directly induces animal hypoxia-dependent transcriptional changes. The O(2)-requirement for culmination is increased by P4H1-gene disruption and reduced by P4H1 overexpression. A target of Dictyostelium P4H1 is Skp1, a subunit of the SCF-class of E3-ubiquitin ligases related to the VBC-class that mediates hydroxylation-dependent degradation of animal HIFalpha. Skp1 is a target of a novel cytoplasmic O-glycosylation pathway that modifies HyPro143 with a pentasaccharide, and glycosyltransferase mutants reveal that glycosylation intermediates have antagonistic effects toward P4H1 in O(2)-signaling. Current evidence indicates that Skp1 is the only glycosylation target in cells, based on metabolic labeling, biochemical complementation, and enzyme specificity studies. Bioinformatics studies suggest that the HyPro-modification pathway existed in the ancestral eukaryotic lineage and was retained in selected modern day unicellular organisms whose life cycles experience varying degrees of hypoxia. It is proposed that, in Dictyostelium and other protists including the agent for human toxoplasmosis Toxoplasma gondii, prolyl hydroxylation and glycosylation mediate O(2)-signaling in hierarchical fashion via Skp1 to control the proteome, directly via degradation rather than indirectly via transcription as found in animals.
Journal of Biological Chemistry | 2003
Fei Wang; Talibah Metcalf; Hanke van der Wel; Christopher M. West
Like animal cells, many unicellular eukaryotes modify mucin-like domains of secretory proteins with multiple O-linked glycans. Unlike animal mucin-type glycans, those of some microbial eukaryotes are initiated by α-linked GlcNAc rather than α-GalNAc. Based on sequence similarity to a recently cloned soluble polypeptide hydroxyproline GlcNAc-transferase that modifies Skp1 in the cytoplasm of the social ameba Dictyostelium, we have identified an enzyme, polypeptide α-N-acetylglucosaminyltransferase (pp α-GlcNAc-T2), that attaches GlcNAc to numerous secretory proteins in this organism. Unlike the Skp1 GlcNAc-transferase, pp α-GlcNAc-T2 is predicted to be a type 2 transmembrane protein. A highly purified, soluble, recombinant fragment of pp α-GlcNAc-T2 efficiently transfers GlcNAc from UDP-GlcNAc to synthetic peptides corresponding to mucin-like domains in two proteins that traverse the secretory pathway. pp α-GlcNAc-T2 is required for addition of GlcNAc to peptides in cell extracts and to the proteins in vivo. Mass spectrometry and Edman degradation analyses show that pp α-GlcNAc-T2 attaches GlcNAc in α-linkage to the Thr residues of all the synthetic mucin repeats. pp α-GlcNAc-T2 is encoded by the previously described modB locus defined by chemical mutagenesis, based on sequence analysis and complementation studies. This finding establishes that the many phenotypes of modB mutants, including a permeability defect in the spore coat, can now be ascribed to defects in mucin-type O-glycosylation. A comparison of the sequences of pp α-GlcNAc-T2 and the animal pp α-GalNAc-transferases reveals an ancient common ancestry indicating that, despite the different N-acetylhexosamines involved, the enzymes share a common mechanism of action.
Journal of Biological Chemistry | 2012
Yuechi Xu; Kevin M. Brown; Zhuo A. Wang; Hanke van der Wel; Crystal Teygong; Dongmei Zhang; Ira J. Blader; Christopher M. West
Background: A cytoplasmic prolyl 4-hydroxylase of Dictyostelium contributes to O2 sensing by modifying Skp1. Results: The corresponding protein of Toxoplasma exhibits related functions but has high affinity for O2. Conclusion: Hydroxylation of Skp1 is conserved in protists but may sense O2 indirectly. Significance: The putative evolutionary precursor of animal prolyl 4-hydroxylases that modify HIFα potentially remodeled the proteome via degradation rather than transcriptionally. In diverse types of organisms, cellular hypoxic responses are mediated by prolyl 4-hydroxylases that use O2 and α-ketoglutarate as substrates to hydroxylate conserved proline residues in target proteins. Whereas in metazoans these enzymes control the stability of the HIFα family of transcription factor subunits, the Dictyostelium enzyme (DdPhyA) contributes to O2 regulation of development by a divergent mechanism involving hydroxylation and subsequent glycosylation of DdSkp1, an adaptor subunit in E3SCF ubiquitin ligases. Sequences related to DdPhyA, DdSkp1, and the glycosyltransferases that cap Skp1 hydroxyproline occur also in the genomes of Toxoplasma and other protists, suggesting that this O2 sensing mechanism may be widespread. Here we show by disruption of the TgphyA locus that this enzyme is required for Skp1 glycosylation in Toxoplasma and that disrupted parasites grow slowly at physiological O2 levels. Conservation of cellular function was tested by expression of TgPhyA in DdphyA-null cells. Simple gene replacement did not rescue Skp1 glycosylation, whereas overexpression not only corrected Skp1 modification but also restored the O2 requirement to a level comparable to that of overexpressed DdPhyA. Bacterially expressed TgPhyA protein can prolyl hydroxylate both Toxoplasma and Dictyostelium Skp1s. Kinetic analyses showed that TgPhyA has similar properties to DdPhyA, including a superimposable dependence on the concentration of its co-substrate α-ketoglutarate. Remarkably, however, TgPhyA had a significantly higher apparent affinity for O2. The findings suggest that Skp1 hydroxylation by PhyA is a conserved process among protists and that this biochemical pathway may indirectly sense O2 by detecting the levels of O2-regulated metabolites such as α-ketoglutarate.
Developmental Biology | 2011
Zhuo A. Wang; Divyendu Singh; Hanke van der Wel; Christopher M. West
O(2) regulates multicellular development of the social amoeba Dictyostelium, suggesting it may serve as an important cue in its native soil environment. Dictyostelium expresses an HIFα-type prolyl 4-hydroxylase (P4H1) whose levels affect the O(2)-threshold for culmination implicating it as a direct O(2)-sensor, as in animals. But Dictyostelium lacks HIFα, a mediator of animal prolyl 4-hydroxylase signaling, and P4H1 can hydroxylate Pro143 of Skp1, a subunit of E3(SCF)ubiquitin-ligases. Skp1 hydroxyproline then becomes the target of five sequential glycosyltransferase reactions that modulate the O(2)-signal. Here we show that genetically induced changes in Skp1 levels also affect the O(2)-threshold, in opposite direction to that of the modification enzymes suggesting that the latter reduce Skp1 activity. Consistent with this, overexpressed Skp1 is poorly hydroxylated and Skp1 is the only P4H1 substrate detectable in extracts. Effects of Pro143 mutations, and of combinations of Skp1 and enzyme level perturbations, are consistent with pathway modulation of Skp1 activity. However, some effects were not mirrored by changes in modification of the bulk Skp1 pool, implicating a Skp1 subpopulation and possibly additional unknown factors. Altered Skp1 levels also affected other developmental transitions in a modification-dependent fashion. Whereas hydroxylation of animal HIFα results in its polyubiquitination and proteasomal degradation, Dictyostelium Skp1 levels were little affected by its modification status. These data indicate that Skp1 and possibly E3(SCF)ubiquitin-ligase activity modulate O(2)-dependent culmination and other developmental processes, and at least partially mediate the action of the hydroxylation/glycosylation pathway in O(2)-sensing.
Journal of Biological Chemistry | 2009
Zhuo A. Wang; Hanke van der Wel; Yusuf Vohra; Therese Buskas; Geert-Jan Boons; Christopher M. West
In the social amoeba Dictyostelium, a terminal step in development is regulated by environmental O2. Prolyl 4-hydroxylase-1 (P4H1) was previously implicated in mediating the O2 signal, and P4H1-null cells require elevated O2 to culminate. The E3-ubiquitin ligase adaptor Skp1 is a P4H1 substrate, and here we investigate the function of PgtA, a dual function β3-galactosyltransferase/α2-fucosyltransferase that contributes the 2nd and 3rd sugars of the pentasaccharide cap formed on Skp1 hydroxyproline. Although pgtA-null cells, whose Skp1 contains only a single sugar (N-acetylglucosamine or GlcNAc), show wild-type O2 dependence of culmination, cells lacking AgtA, an α3-galactosyltransferase required to extend the trisaccharide, require elevated O2 as for P4H1-null cells. Skp1 is the only detectable protein modified by purified PgtA added to pgtA-null extracts. The basis for specificity of PgtA was investigated using native Skp1 acceptor glycoforms and a novel synthetic peptide containing GlcNAcα1,4-hydroxy(trans)proline. Cysteine-alkylation of Skp1 strongly inhibited modification by the PgtA galactosyltransferase but not the fucosyltransferase. Furthermore, native and synthetic Skp1 glycopeptides were poorly galactosylated, not processively fucosylated, and negligibly inhibitory, whereas the fucosyltransferase was active toward small substrates. In addition, the galactosyltransferase exhibited an atypical concentration dependence on UDP-galactose. The results provide the first evidence that Skp1 is the functional target of P4H1 in O2 regulation, indicate a gatekeeper function for the β3-galactosyltransferase in the PgtA dual reaction, and identify an unexpected P4H1-dependent yet antagonistic function for PgtA that is reversed by AgtA.