Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanlee P. Ji is active.

Publication


Featured researches published by Hanlee P. Ji.


Nature Biotechnology | 2008

Next-generation DNA sequencing.

Jay Shendure; Hanlee P. Ji

DNA sequence represents a single format onto which a broad range of biological phenomena can be projected for high-throughput data collection. Over the past three years, massively parallel DNA sequencing platforms have become widely available, reducing the cost of DNA sequencing by over two orders of magnitude, and democratizing the field by putting the sequencing capacity of a major genome center in the hands of individual investigators. These new technologies are rapidly evolving, and near-term challenges include the development of robust protocols for generating sequencing libraries, building effective new approaches to data-analysis, and often a rethinking of experimental design. Next-generation DNA sequencing has the potential to dramatically accelerate biological and biomedical research, by enabling the comprehensive analysis of genomes, transcriptomes and interactomes to become inexpensive, routine and widespread, rather than requiring significant production-scale efforts.


American Journal of Human Genetics | 1997

Inherited mutations in PTEN that are associated with breast cancer, Cowden disease, and juvenile polyposis

Eric D. Lynch; Elizabeth A. Ostermeyer; Ming K. Lee; J. Fernando Arena; Hanlee P. Ji; Jamie L. Dann; Karen Swisshelm; David Suchard; Patrick MacLeod; Stener Kvinnsland; Bjorn Tore Gjertsen; Ketil Heimdal; Herb Lubs; Pål Møller; Mary Claire King

PTEN, a protein tyrosine phosphatase with homology to tensin, is a tumor-suppressor gene on chromosome 10q23. Somatic mutations in PTEN occur in multiple tumors, most markedly glioblastomas. Germ-line mutations in PTEN are responsible for Cowden disease (CD), a rare autosomal dominant multiple-hamartoma syndrome. PTEN was sequenced from constitutional DNA from 25 families. Germ-line PTEN mutations were detected in all of five families with both breast cancer and CD, in one family with juvenile polyposis syndrome, and in one of four families with breast and thyroid tumors. In this last case, signs of CD were subtle and were diagnosed only in the context of mutation analysis. PTEN mutations were not detected in 13 families at high risk of breast and/or ovarian cancer. No PTEN-coding-sequence polymorphisms were detected in 70 independent chromosomes. Seven PTEN germ-line mutations occurred, five nonsense and two missense mutations, in six of nine PTEN exons. The wild-type PTEN allele was lost from renal, uterine, breast, and thyroid tumors from a single patient. Loss of PTEN expression was an early event, reflected in loss of the wild-type allele in DNA from normal tissue adjacent to the breast and thyroid tumors. In RNA from normal tissues from three families, mutant transcripts appeared unstable. Germ-line PTEN mutations predispose to breast cancer in association with CD, although the signs of CD may be subtle.


Nature Biotechnology | 2012

Performance comparison of whole-genome sequencing platforms

Hugo Y. K. Lam; Michael J. Clark; Rui Chen; Rong Chen; Georges Natsoulis; Maeve O'Huallachain; Frederick E. Dewey; Lukas Habegger; Euan A. Ashley; Mark Gerstein; Atul J. Butte; Hanlee P. Ji; Michael Snyder

Whole-genome sequencing is becoming commonplace, but the accuracy and completeness of variant calling by the most widely used platforms from Illumina and Complete Genomics have not been reported. Here we sequenced the genome of an individual with both technologies to a high average coverage of ∼76×, and compared their performance with respect to sequence coverage and calling of single-nucleotide variants (SNVs), insertions and deletions (indels). Although 88.1% of the ∼3.7 million unique SNVs were concordant between platforms, there were tens of thousands of platform-specific calls located in genes and other genomic regions. In contrast, 26.5% of indels were concordant between platforms. Target enrichment validated 92.7% of the concordant SNVs, whereas validation by genotyping array revealed a sensitivity of 99.3%. The validation experiments also suggested that >60% of the platform-specific variants were indeed present in the genome. Our results have important implications for understanding the accuracy and completeness of the genome sequencing platforms.


Cancer Research | 2010

Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas.

Joshua D. Schiffman; J. Graeme Hodgson; Scott R. VandenBerg; Patrick Flaherty; Mei Yin Polley; Mamie Yu; Paul G. Fisher; David H. Rowitch; James M. Ford; Mitchel S. Berger; Hanlee P. Ji; David H. Gutmann; C. David James

Malignant astrocytomas are a deadly solid tumor in children. Limited understanding of their underlying genetic basis has contributed to modest progress in developing more effective therapies. In an effort to identify such alterations, we performed a genome-wide search for DNA copy number aberrations (CNA) in a panel of 33 tumors encompassing grade 1 through grade 4 tumors. Genomic amplifications of 10-fold or greater were restricted to grade 3 and 4 astrocytomas and included the MDM4 (1q32), PDGFRA (4q12), MET (7q21), CMYC (8q24), PVT1 (8q24), WNT5B (12p13), and IGF1R (15q26) genes. Homozygous deletions of CDKN2A (9p21), PTEN (10q26), and TP53 (17p3.1) were evident among grade 2 to 4 tumors. BRAF gene rearrangements that were indicated in three tumors prompted the discovery of KIAA1549-BRAF fusion transcripts expressed in 10 of 10 grade 1 astrocytomas and in none of the grade 2 to 4 tumors. In contrast, an oncogenic missense BRAF mutation (BRAF(V600E)) was detected in 7 of 31 grade 2 to 4 tumors but in none of the grade 1 tumors. BRAF(V600E) mutation seems to define a subset of malignant astrocytomas in children, in which there is frequent concomitant homozygous deletion of CDKN2A (five of seven cases). Taken together, these findings highlight BRAF as a frequent mutation target in pediatric astrocytomas, with distinct types of BRAF alteration occurring in grade 1 versus grade 2 to 4 tumors.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Multigene amplification and massively parallel sequencing for cancer mutation discovery

Fredrik Dahl; Johan Stenberg; Simon Fredriksson; Katrina Welch; Michael Zhang; Mats Nilsson; David C. Bicknell; Walter F. Bodmer; Ronald W. Davis; Hanlee P. Ji

We have developed a procedure for massively parallel resequencing of multiple human genes by combining a highly multiplexed and target-specific amplification process with a high-throughput parallel sequencing technology. The amplification process is based on oligonucleotide constructs, called selectors, that guide the circularization of specific DNA target regions. Subsequently, the circularized target sequences are amplified in multiplex and analyzed by using a highly parallel sequencing-by-synthesis technology. As a proof-of-concept study, we demonstrate parallel resequencing of 10 cancer genes covering 177 exons with average sequence coverage per sample of 93%. Seven cancer cell lines and one normal genomic DNA sample were studied with multiple mutations and polymorphisms identified among the 10 genes. Mutations and polymorphisms in the TP53 gene were confirmed by traditional sequencing.


Blood | 2013

Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma.

Michael R. Green; Andrew J. Gentles; Ramesh V. Nair; Jonathan M. Irish; Shingo Kihira; Chih Long Liu; Itai Kela; Erik S. Hopmans; June H. Myklebust; Hanlee P. Ji; Sylvia K. Plevritis; Ronald Levy; Ash A. Alizadeh

Follicular lymphoma (FL) is currently incurable using conventional chemotherapy or immunotherapy regimes, compelling new strategies. Advances in high-throughput sequencing technologies that can reveal oncogenic pathways have stimulated interest in tailoring therapies toward actionable somatic mutations. However, for mutation-directed therapies to be most effective, the mutations must be uniformly present in evolved tumor cells as well as in the self-renewing tumor-cell precursors. Here, we show striking intratumoral clonal diversity within FL tumors in the representation of mutations in the majority of genes as revealed by whole exome sequencing of subpopulations. This diversity captures a clonal hierarchy, resolved using immunoglobulin somatic mutations and IGH-BCL2 translocations as a frame of reference and by comparing diagnosis and relapse tumor pairs, allowing us to distinguish early versus late genetic eventsduring lymphomagenesis. We provide evidence that IGH-BCL2 translocations and CREBBP mutations are early events, whereas MLL2 and TNFRSF14 mutations probably represent late events during disease evolution. These observations provide insight into which of the genetic lesions represent suitable candidates for targeted therapies.


Nature Methods | 2007

Multiplexed protein detection by proximity ligation for cancer biomarker validation

Simon Fredriksson; William Dixon; Hanlee P. Ji; Albert C. Koong; Michael Mindrinos; Ronald W. Davis

We present a proximity ligation–based multiplexed protein detection procedure in which several selected proteins can be detected via unique nucleic-acid identifiers and subsequently quantified by real-time PCR. The assay requires a 1-μl sample, has low-femtomolar sensitivity as well as five-log linear range and allows for modular multiplexing without cross-reactivity. The procedure can use a single polyclonal antibody batch for each target protein, simplifying affinity-reagent creation for new biomarker candidates.


Nature Biotechnology | 2016

Haplotyping germline and cancer genomes with high-throughput linked-read sequencing

Grace X Y Zheng; Billy Lau; Michael Schnall-Levin; Mirna Jarosz; John M. Bell; Christopher M Hindson; Sofia Kyriazopoulou-Panagiotopoulou; Donald A Masquelier; Landon Merrill; Jessica M Terry; Patrice A Mudivarti; Paul W Wyatt; Rajiv Bharadwaj; Anthony J Makarewicz; Yuan Li; Phillip Belgrader; Andrew D Price; Adam J Lowe; Patrick Marks; Gerard M Vurens; Paul Hardenbol; Luz Montesclaros; Melissa Luo; Lawrence Greenfield; Alexander Wong; David E Birch; Steven W Short; Keith P Bjornson; Pranav Patel; Erik S. Hopmans

Haplotyping of human chromosomes is a prerequisite for cataloguing the full repertoire of genetic variation. We present a microfluidics-based, linked-read sequencing technology that can phase and haplotype germline and cancer genomes using nanograms of input DNA. This high-throughput platform prepares barcoded libraries for short-read sequencing and computationally reconstructs long-range haplotype and structural variant information. We generate haplotype blocks in a nuclear trio that are concordant with expected inheritance patterns and phase a set of structural variants. We also resolve the structure of the EML4-ALK gene fusion in the NCI-H2228 cancer cell line using phased exome sequencing. Finally, we assign genetic aberrations to specific megabase-scale haplotypes generated from whole-genome sequencing of a primary colorectal adenocarcinoma. This approach resolves haplotype information using up to 100 times less genomic DNA than some methods and enables the accurate detection of structural variants.


Nature Medicine | 2014

Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture

Xingnan Li; Lincoln D. Nadauld; Akifumi Ootani; David C Corney; Reetesh K. Pai; Olivier Gevaert; Michael Cantrell; Paul G. Rack; James T. Neal; Carol W.M. Chan; Trevor M. Yeung; Xue Gong; Jenny Yuan; Julie Wilhelmy; Sylvie Robine; Laura D. Attardi; Sylvia K. Plevritis; Kenneth E Hung; Chang-Zheng Chen; Hanlee P. Ji; Calvin J. Kuo

The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here we used a single air-liquid interface culture method without modification to engineer oncogenic mutations into primary epithelial and mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia as a result of expression of Kras carrying the G12D mutation (KrasG12D), p53 loss or both and readily generated adenocarcinoma after in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, KrasG12D and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), as compared to the more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the IGF2 (insulin-like growth factor-2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues.


Nucleic Acids Research | 2012

Ultrasensitive detection of rare mutations using next-generation targeted resequencing

Patrick Flaherty; Georges Natsoulis; Omkar Muralidharan; Mark A. Winters; Jason D. Buenrostro; John M. Bell; Sheldon T. Brown; Mark Holodniy; Nancy Zhang; Hanlee P. Ji

With next-generation DNA sequencing technologies, one can interrogate a specific genomic region of interest at very high depth of coverage and identify less prevalent, rare mutations in heterogeneous clinical samples. However, the mutation detection levels are limited by the error rate of the sequencing technology as well as by the availability of variant-calling algorithms with high statistical power and low false positive rates. We demonstrate that we can robustly detect mutations at 0.1% fractional representation. This represents accurate detection of one mutant per every 1000 wild-type alleles. To achieve this sensitive level of mutation detection, we integrate a high accuracy indexing strategy and reference replication for estimating sequencing error variance. We employ a statistical model to estimate the error rate at each position of the reference and to quantify the fraction of variant base in the sample. Our method is highly specific (99%) and sensitive (100%) when applied to a known 0.1% sample fraction admixture of two synthetic DNA samples to validate our method. As a clinical application of this method, we analyzed nine clinical samples of H1N1 influenza A and detected an oseltamivir (antiviral therapy) resistance mutation in the H1N1 neuraminidase gene at a sample fraction of 0.18%.

Collaboration


Dive into the Hanlee P. Ji's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge