Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanna Bednarz is active.

Publication


Featured researches published by Hanna Bednarz.


World Journal of Microbiology & Biotechnology | 2017

Co-encapsulation of amyloglucosidase with starch and Saccharomyces cerevisiae as basis for a long-lasting CO2 release

Pascal Humbert; Marina Vemmer; Marco Giampà; Hanna Bednarz; Karsten Niehaus; Anant V. Patel

CO2 is known as a major attractant for many arthropod pests which can be exploited for pest control within novel attract-and-kill strategies. This study reports on the development of a slow-release system for CO2 based on calcium alginate beads containing granular corn starch, amyloglucosidase and Saccharomyces cerevisiae. Our aim was to evaluate the conditions which influence the CO2 release and to clarify the biochemical reactions taking place within the beads. The amyloglucosidase was immobilized with a high encapsulation efficiency of 87% in Ca-alginate beads supplemented with corn starch and S. cerevisiae biomass. The CO2 release from the beads was shown to be significantly affected by the concentration of amyloglucosidase and corn starch within the beads as well as by the incubation temperature. Beads prepared with 0.1 amyloglucosidase units/g matrix solution led to a long-lasting CO2 emission at temperatures between 6 and 25 °C. Starch degradation data correlated well with the CO2 release from beads during incubation and scanning electron microscopy micrographs visualized the degradation of corn starch granules by the co-encapsulated amyloglucosidase. By implementing MALDI-ToF mass spectrometry imaging for the analysis of Ca-alginate beads, we verified that the encapsulated amyloglucosidase converts starch into glucose which is immediately consumed by S. cerevisiae cells. When applied into the soil, the beads increased the CO2 concentration in soil significantly. Finally, we demonstrated that dried beads showed a CO2 production in soil comparable to the moist beads. The long-lasting CO2-releasing beads will pave the way towards novel attract-and-kill strategies in pest control.


Frontiers in Plant Science | 2015

Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa

Traud Winkelmann; Svenja Ratjens; Melanie Bartsch; Christina Rode; Karsten Niehaus; Hanna Bednarz

Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos.


Standards in Genomic Sciences | 2013

Genome sequence of the squalene-degrading bacterium Corynebacterium terpenotabidum type strain Y-11(T) (= DSM 44721(T)).

Christian Rückert; Andreas Albersmeier; Arwa Al-Dilaimi; Hanna Bednarz; Karsten Niehaus; Rafael Szczepanowski; Jörn Kalinowski

Corynebacterium terpenotabidum Takeuchi et. al 1999 is a member of the genus Corynebacterium, which contains Gram-positive and non-spore forming bacteria with a high G+C content. C. terpenotabidum was isolated from soil based on its ability to degrade squalene and belongs to the aerobic and non-hemolytic Corynebacteria. It displays tolerance to salts (up to 8%) and is related to Corynebacterium variabile involved in cheese ripening. As this is a type strain of Corynebacterium, this project describing the 2.75 Mbp long chromosome with its 2,369 protein-coding and 72 RNA genes will aid the GenomicEncyclopedia ofBacteria andArchaea project.


Toxicology | 2017

Mixture effects of azole fungicides on the adrenal gland in a broad dose range

S. Rieke; T. Heise; F. Schmidt; W. Haider; Hanna Bednarz; Karsten Niehaus; Almut Mentz; Jörn Kalinowski; K. I. Hirsch-Ernst; Pablo Steinberg; L. Niemann; P. Marx-Stoelting

Consumers are exposed to low concentrations of a variety of pesticide residues in or on food. Some of them might interfere with the endocrine system. While each individual active substance has been extensively tested for toxicity and safety, potential combination effects possibly resulting from combined exposure to different pesticides have seldomly been tested so far, especially in vivo. Since the adrenal gland is a key endocrine organ, we investigated if and how substances of a group of fungicides presumed to interfere with the biosynthesis of steroid hormones affect this organ when applied individually and in combination in a broad dose range. A 28-day feeding study was conducted in Wistar rats by using three (tri)azole fungicides considered to potentially affect the endocrine system (cyproconazole, epoxiconazole and prochloraz) individually at five dose levels, ranging from 0.9ppm to 2400ppm, and in combination at three dose levels. The parameters analysed included classical toxicology (pathology, histopathology, clinical chemistry) and molecular toxicology endpoints (gene expression arrays and quantitative real time PCR e.g. of Star, HSD3β, Cyp11a1, Cyp11b1, Cyp11b2, Cyp 21, ApoE), as well as hormone analysis. A dose-dependent decrease in the adrenal gland weight of rats treated with epoxiconazole alone, which was accompanied by an atrophy of the adrenal gland as well as by an increase in the serum cholesterol level and which only became statistically significant at the top dose levels, was observed. These effects were attenuated in the combination experiments, although the same epoxiconazole concentration was used.


Journal of Biotechnology | 2017

Comparative analysis of different xanthan samples by atomic force microscopy

Julia Teckentrup; Orooba Al-Hammood; Tim Steffens; Hanna Bednarz; Volker Walhorn; Karsten Niehaus; Dario Anselmetti

The polysaccharide xanthan which is produced by the γ-proteobacterium Xanthomonas campestris is used as a food thickening agent and rheologic modifier in numerous food, cosmetics and technical applications. Its great commercial importance stimulated biotechnological approaches to optimize the xanthan production. By targeted genetic modification the metabolism of Xanthomonas can be modified in such a way that the xanthan production efficiency and/or the shear-thickening potency is optimized. Using atomic force microscopy (AFM) the secondary structure of single xanthan polymers produced by the wild type Xanthomonas campestris B100 and several genetically modified variations were analyzed. We found a wide variation of characteristic differences between xanthan molecules produced by different strains. The structures ranged from single-stranded coiled polymers to branched xanthan double-strands. These results can help to get a better understanding of the polymerization- and secretion-machinery that are relevant for xanthan synthesis. Furthermore, we demonstrate that the xanthan secondary structure strongly correlates with its viscosifying properties.


Journal of Biotechnology | 2016

Genetic engineering in Actinoplanes sp. SE50/110 − development of an intergeneric conjugation system for the introduction of actinophage-based integrative vectors

Tetiana Gren; Vera Ortseifen; Daniel Wibberg; Susanne Schneiker-Bekel; Hanna Bednarz; Karsten Niehaus; Till Zemke; Marcus Persicke; Alfred Pühler; Jörn Kalinowski

The α-glucosidase inhibitor acarbose is used for treatment of diabetes mellitus type II, and is manufactured industrially with overproducing derivatives of Actinoplanes sp. SE50/110, reportedly obtained by conventional mutagenesis. Despite of high industrial significance, only limited information exists regarding acarbose metabolism, function and regulation of these processes, due to the absence of proper genetic engineering methods and tools developed for this strain. Here, a basic toolkit for genetic engineering of Actinoplanes sp. SE50/110 was developed, comprising a standardized protocol for a DNA transfer through Escherichia coli-Actinoplanes intergeneric conjugation and applied for the transfer of ϕC31, ϕBT1 and VWB actinophage-based integrative vectors. Integration sites, occurring once per genome for all vectors, were sequenced and characterized for the first time in Actinoplanes sp. SE50/110. Notably, in case of ϕC31 based vector pSET152, the integration site is highly conserved, while for ϕBT1 and the VWB based vectors pRT801 and pSOK804, respectively, no sequence similarities to those in other bacteria were detected. The studied plasmids were proven to be stable and neutral with respect to strain morphology and acarbose production, enabling future use for genetic manipulations of Actinoplanes sp. SE50/110. To further broaden the spectrum of available tools, a GUS reporter system, based on the pSET152 derived vector, was also established in Actinoplanes sp. SE50/110.


PLOS ONE | 2017

The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.)

Bart Verwaaijen; Daniel Wibberg; Magdalena Kröber; Anika Winkler; Rita Zrenner; Hanna Bednarz; Karsten Niehaus; Rita Grosch; Alfred Pühler; Andreas Schlüter

The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L.) and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14) was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14). The zones were defined as: Zone 1—symptomless, Zone 2—light brown discoloration, and Zone 3—dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq) analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes exhibited extremely high transcription levels. Most differentially higher expressed transcripts were found within Zone 2. In Zone 3, the zone with the strongest degree of interaction, gene transcripts indicative of apoptotic activity were highly abundant. The transcriptome data presented in this work support previous models of the disease and interaction cycle of R. solani and lettuce and may influence effective techniques for control of this pathogen.


Frontiers in Bioengineering and Biotechnology | 2015

ColE1-Plasmid Production in Escherichia coli: Mathematical Simulation and Experimental Validation.

Inga Freudenau; Petra Lutter; Ruth Baier; Martin Schleef; Hanna Bednarz; Alvaro R. Lara; Karsten Niehaus

Plasmids have become very important as pharmaceutical gene vectors in the fields of gene therapy and genetic vaccination in the past years. In this study, we present a dynamic model to simulate the ColE1-like plasmid replication control, once for a DH5α-strain carrying a low copy plasmid (DH5α-pSUP 201-3) and once for a DH5α-strain carrying a high copy plasmid (DH5α-pCMV-lacZ) by using ordinary differential equations and the MATLAB software. The model includes the plasmid replication control by two regulatory RNA molecules (RNAI and RNAII) as well as the replication control by uncharged tRNA molecules. To validate the model, experimental data like RNAI- and RNAII concentration, plasmid copy number (PCN), and growth rate for three different time points in the exponential phase were determined. Depending on the sampled time point, the measured RNAI- and RNAII concentrations for DH5α-pSUP 201-3 reside between 6 ± 0.7 and 34 ± 7 RNAI molecules per cell and 0.44 ± 0.1 and 3 ± 0.9 RNAII molecules per cell. The determined PCNs averaged between 46 ± 26 and 48 ± 30 plasmids per cell. The experimentally determined data for DH5α-pCMV-lacZ reside between 345 ± 203 and 1086 ± 298 RNAI molecules per cell and 22 ± 2 and 75 ± 10 RNAII molecules per cell with an averaged PCN of 1514 ± 1301 and 5806 ± 4828 depending on the measured time point. As the model was shown to be consistent with the experimentally determined data, measured at three different time points within the growth of the same strain, we performed predictive simulations concerning the effect of uncharged tRNA molecules on the ColE1-like plasmid replication control. The hypothesis is that these tRNA molecules would have an enhancing effect on the plasmid production. The in silico analysis predicts that uncharged tRNA molecules would indeed increase the plasmid DNA production.


Standards in Genomic Sciences | 2015

Genome sequence of the soil bacterium Corynebacterium callunae type strain DSM 20147T

Marcus Persicke; Andreas Albersmeier; Hanna Bednarz; Karsten Niehaus; Jörn Kalinowski; Christian Rückert

Corynebacterium callunae DSM 20147T is a member of the genus Corynebacterium which contains Gram-positive and non-spore forming bacteria with a high G + C content. C. callunae was isolated during a screening for l-glutamic acid producing bacteria and belongs to the aerobic and non-haemolytic corynebacteria. As this is a type strain in a subgroup of industrial relevant bacteria for many of which there are also complete genome sequence available, knowledge of the complete genome sequence might enable genome comparisons to identify production relevant genetic loci. This project, describing the 2.84 Mbp long chromosome and the two plasmids, pCC1 (4.11 kbp) and pCC2 (85.02 kbp), with their 2,647 protein-coding and 82 RNA genes, will aid the Genomic Encyclopedia of Bacteria andArchaea project.


International Journal of Systematic and Evolutionary Microbiology | 2015

Revisiting Corynebacterium glyciniphilum (ex Kubota et al., 1972) sp. nov., nom. rev., isolated from putrefied banana.

Arwa Al-Dilaimi; Hanna Bednarz; Alexander Lömker; Karsten Niehaus; Jörn Kalinowski; Christian Rückert

A strain of a species of the genus Corynebacterium, designated AJ 3170(T), was isolated during the 1980s from putrefied bananas. Since then, there have been no further updates on the description of the strain or its phylogenetic classification. However, phylogenetic analysis of this strain using 16S rRNA and in silico DNA-DNA hybridization has confirmed that it is a member of the genus Corynebacterium and that strain AJ 3170(T) clusters with Corynebacterium variabile DSM 44702(T), Corynebacterium terpenotabidum Y-11(T) and Corynebacterium nuruki S6-4(T) in one subgroup. Furthermore, a combination of enzymatic, chemical, and morphological characterization techniques was applied in order to describe strain AJ 3170(T) further. The strain grew well at pH values of 6-10 and at temperatures of 30-41 °C. The major fatty acids were C16 : 0 (42.15 %), C18 : 1ω9c (41.6 %) and C18 : 0 10-methyl (TBSA) (8.56 %). The whole-cell sugars were determined to comprise galactose, arabinose and ribose. On the basis of this phenotypic, chemotaxonomic and phylogenetic characterization, it is proposed that strain AJ 3170(T) represents a novel species, for which the name Corynebacterium glyciniphilum sp. nov. is proposed; the type strain is AJ 3170(T) ( = DSM 45795(T) = ATCC 21341(T)).

Collaboration


Dive into the Hanna Bednarz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anant V. Patel

Bielefeld University of Applied Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge