Hanna Hartmann
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hanna Hartmann.
Gastroenterology | 2008
Hanna Hartmann; Holger K. Eltzschig; Helena Wurz; Klaus Hantke; Alexander Rakin; Amir S. Yazdi; Gianluca Matteoli; Erwin Bohn; Ingo B. Autenrieth; Jörn Karhausen; Diana Neumann; Sean P. Colgan; Volkhard A.J. Kempf
BACKGROUND & AIMS Hypoxia inducible factor-1 (HIF-1) is the key transcriptional regulator during adaptation to hypoxia. Recent studies provide evidence for HIF-1 activation during bacterial infections. However, molecular details of how bacteria activate HIF-1 remain unclear. Here, we pursued the role of bacterial siderophores in HIF-1 activation during infection with Enterobacteriaceae. METHODS In vivo, HIF-1 activation and HIF-1-dependent gene induction in Peyers patches were analyzed after orogastric infection with Yersinia enterocolitica. The course of an orogastric Y enterocolitica infection was determined using mice with a deletion of HIF-1alpha in the intestine. In vitro, the mechanism of HIF-1 activation was analyzed in infections with Y enterocolitica, Salmonella enterica subsp enterica, and Enterobacter aerogenes. RESULTS Infection of mice with Y enterocolitica led to functional activation of HIF-1 in Peyers patches. Because mice with deletion of HIF-1alpha in the intestinal epithelium showed a significantly higher susceptibility to orogastric Y enterocolitica infections, bacterial HIF-1 activation appears to represent a host defense mechanism. Additional studies with Y enterocolitica, S enterica subsp enterica, or E aerogenes, and, moreover, application of their siderophores (yersiniabactin, salmochelin, aerobactin) caused a robust, dose-dependent HIF-1 response in human epithelia and endothelia, independent of cellular hypoxia. HIF-1 activation occurs most likely because of inhibition of prolylhydroxylase activity and is abolished upon infection with siderophore uptake deficient bacteria. CONCLUSIONS Taken together, this study reveals what we believe to be a previously unrecognized role of bacterial siderophores for hypoxia-independent activation of HIF-1 during infection with human pathogenic bacteria.
Nano Letters | 2010
Ursula Mittnacht; Hanna Hartmann; San Hein; Hugo M. Oliveira; Mingdong Dong; Ana Paula Pêgo; Jørgen Kjems; Kenneth A. Howard; Burkhard Schlosshauer
Microstructured 20 μm thick polymer filaments used as nerve implants were loaded with chitosan/siRNA nanoparticles to promote nerve regeneration and ensure local delivery of nanotherapeutics. The stable nanoparticles were rapidly internalized by cells and did not affect cell viability. Target mRNA was successfully reduced by 65-75% and neurite outgrowth was enhanced even in an inhibitory environment. This work, thus, supports the application of nanobiofunctionalized implants as a novel approach for spinal cord and nerve repair.
Journal of Clinical Microbiology | 2005
Hanna Hartmann; Henrik Stender; Andrea Schäfer; Ingo B. Autenrieth; Volkhard A. J. Kempf
ABSTRACT Fluorescence in situ hybridization (FISH) using peptide nucleic acid probes (PNAs) allows the identification of Staphylococcus aureus from human blood culture samples. We present data revealing that the combination of PNA FISH and flow cytometry is a possible approach for the noncultural identification of staphylococci in blood cultures.
Acta Biomaterialia | 2013
Susanne Hossfeld; Andrea Nolte; Hanna Hartmann; M. Recke; M. Schaller; Tobias Walker; Jørgen Kjems; Burkhard Schlosshauer; Dieter Stoll; Hans P. Wendel; Rumen Krastev
One procedure to treat stenotic coronary arteries is the percutaneous transluminal coronary angioplasty (PTCA). In recent years, drug-eluting stents (DESs) have demonstrated elaborate ways to improve outcomes of intravascular interventions. To enhance DESs, the idea has evolved to design stents that elute specific small interfering RNA (siRNA) for better vascular wall regeneration. Layer-by-layer (LbL) technology offers the possibility of incorporating siRNA nanoplexes (NPs) to achieve bioactive medical implant coatings. The LbL technique was used to achieve hyaluronic acid/chitosan (HA/Chi) films with incorporated Chi-siRNA NPs. The multilayer growth was monitored by quartz crystal microbalance. The coating on the stents and its thickness were analyzed using fluorescence and scanning electron microscopy. All stents showed a homogeneous coating, and the polyelectrolyte multilayers (PEMs) were not disrupted after ethylene oxide sterilization or expansion. The in vitro uptake of fluorescent-labeled NPs from PEMs in primary human endothelial cells (ECs) was analyzed by flow cytometry for 2, 6 and 9 days. Furthermore, stents coated with HA/Chi and Chi-siRNA NPs were expanded into porcine arteries and showed ex vivo delivery of NPs. The films showed no critical results in terms of hemocompatibility. This study demonstrates that Chi-siRNA NPs can be incorporated into PEMs consisting of HA and Chi. We conclude that the NPs were delivered to ECs under in vitro conditions. Furthermore, under ex vivo conditions, NPs were transferred into porcine artery walls. Due to their good hemocompatibility, they might make an innovative tool for achieving bioactive coatings for coronary stents.
Journal of Controlled Release | 2013
Hanna Hartmann; Susanne Hossfeld; Burkhard Schlosshauer; Ursula Mittnacht; Ana Paula Pêgo; Martin Dauner; Michael Doser; Dieter Stoll; Rumen Krastev
Binding, stabilizing and promoting cellular uptake of siRNA are all critical efforts in creating matrices for the localized delivery of siRNA molecules to target cells. In this study, we describe the generation of chitosan imidazole/siRNA nanoplexes (NPs) embedded in nano scope polyelectrolyte multilayers (PEMs) composed of hyaluronic acid and chitosan for sustained and localized drug delivery. Regular PEM build-up, successful integration of NPs and controlled release under physiological conditions were shown. Biological efficacy was evaluated in neuronal cell culture concerning cell adhesion, viability, NPs uptake and gene silencing. The additionally shown biological functionalization of neuronal implants possesses potential for future applications in the field of regenerative medicine and treatment of spinal cord injuries.
Neuroscience Letters | 2011
Nadine Hoffmann; Ursula Mittnacht; Hanna Hartmann; Yvonne Baumer; Jørgen Kjems; Sven Oberhoffner; Burkhard Schlosshauer
The manipulation of gene expression by RNA interference could play a key role in future neurotherapies, for example in the development of biohydrid implants to bridge nerve and spinal cord lesion gaps. Such resorbable biomaterial prostheses could serve as growth substrates together with specific siRNA to foster neuronal regeneration. To the best of our knowledge, we are the first to biofunctionalize neuronal prostheses with siRNA. We analyzed neuronal and Schwann cell responses to scrambled siRNA coated polydioxanone polymer filaments designed to imitate pro-regenerative bands of Büngner for oriented axonal regrowth. With a view to future clinical applications we were especially interested in potentially detrimental side effects. We employed a variety of in vitro methods, including a novel impedance electrode microchamber assay, fluorescence and scanning electron microscopy, metabolic labeling and RT-PCR. We found that the application of chitosan/siRNA nanoparticles (1) did not affect glial cell motility or (2) axonal growth in contrast to other formulations, (3) only slightly reduced proliferation, and (4) did not induce inflammatory responses that might hamper axonal regeneration. The data suggest that chitosan/siRNA nanoparticle-coated polymer filaments are suitable for use in biohybrid implants with no significant side effects on neuronal and glial cells.
Molecular Pharmaceutics | 2015
Liane Schuster; Oliver Seifert; Stefanie Vollmer; Roland E. Kontermann; Burkhard Schlosshauer; Hanna Hartmann
Excessive extracellular matrix formation in organs and tissues arises from an imbalance between the synthesis and degradation of matrix proteins, especially collagen. This condition interferes with proper wound healing and regeneration, and to date, no specific treatment is available. In the present study, we propose a targeted drug delivery system consisting of cell-specific immunoliposomes (ILs) loaded with deferoxamine (DFO) as an antifibrotic drug. ILs were functionalized with polyethylene glycol (PEG) to improve the steric stability and prolong their half-life. In addition, a single-chain Fv (scFv) antibody fragment that specifically targets fibroblast activation protein (FAP) was incorporated. An in vitro fibrosis model was employed to test this construct. This model consisted of highly activated pro-fibrotic fibroblasts with 2- to 6-fold induction of selected fibrosis markers: cell/matrix deposited collagen I, total soluble collagen, and α smooth muscle actin. The activation was accompanied by a significant and cell-specific elevation of FAP expression and activity, thereby confirming that FAP is an adequate target for antifibrotic drug delivery. Purified anti-FAP scFv was shown to bind specifically to these cells without influencing the FAP enzymatic activity. DFO was demonstrated to have a dose-dependent antifibrotic activity as quantified by collagen deposition. Specific binding and intracellular uptake of DiI-labeled ILs into the activated fibroblasts were shown by flow cytometry and microscopy. Finally, DFO-loaded ILs targeted to FAP caused a significant reduction in the collagen deposition, whereas no effect was observed using liposomes that lacked the targeting antibody fragment. These results suggest that the FAP-specific scFv-conjugated liposomes have considerable potential for cell-specific targeting applicable as a therapy for excessive collagen deposition during fibrosis. In general, through liposome encapsulation, bioactive molecules, such as DFO, that have broad effects and poor cell penetration can be converted into cell-specific composites for targeted drug delivery.
Carbohydrate Polymers | 2016
Andra Guţoaia; Liane Schuster; Simona Margutti; Stefan Laufer; Burkhard Schlosshauer; Rumen Krastev; Dieter Stoll; Hanna Hartmann
Polyethylene glycol (PEG) is a widely used modification for drug delivery systems. It reduces undesired interaction with biological components, aggregation of complexes and serves as a hydrophilic linker of ligands for targeted drug delivery. However, PEGylation can also lead to undesired changes in physicochemical characteristics of chitosan/siRNA nanoplexes and hamper gene silencing. To address this conflicting issue, PEG-chitosan copolymers were synthesized with stepwise increasing degrees of PEG substitution (1.5% to 8.0%). Subsequently formed PEG-chitosan/siRNA nanoplexes were characterized physicochemically and biologically. The results showed that small ratios of chitosan PEGylation did not affect nanoplex stability and density. However, higher PEGylation ratios reduced nanoplex size and charge, as well as cell uptake and final siRNA knockdown efficiency. Therefore, we recommend fine-tuning of PEGylation ratios to generate PEG-chitosan/siRNA delivery systems with maximum bioactivity. The degree of PEGylation for chitosan/siRNA nanoplexes should be kept low in order to maintain optimal nanoplex efficiency.
Journal of Materials Chemistry B | 2016
Tonya D. Andreeva; Hanna Hartmann; Stefka G. Taneva; Rumen Krastev
Herein the optimization of the physicochemical properties and surface biocompatibility of polyelectrolyte multilayers of the natural, biocompatible and biodegradable, linear polysaccharides hyaluronan and chitosan by Hofmeister anions was systematically investigated. We demonstrated that there is an interconnection between the bulk and surface properties of HA/Chi multilayers both varying in accordance with the arrangement of the anions in the Hofmeister series. Kosmotropic anions increased the hydration, thickness, micro- and macro-roughness, and hydrophilicity and improved the biocompatibility of the films by reduction (2 orders of magnitude) of the films stiffness and complete anti-thrombogenicity.
international conference on solid-state sensors, actuators and microsystems | 2011
Massimo Kubon; Meike Moschallski; T. Ensslen; Gorden Link; Simon Werner; Claus Burkhardt; Hanna Hartmann; B. Schlosshauer; Gerald Urban; Martin Stelzle
We introduce a microsensor implant (MSI) comprising microsensors for dissolved oxygen, pH and electrical impedance to monitor ingrowth behavior of biomaterial coatings into tissue. The chorioallantoic membrane (CAM) of ex ovo transferred avian embryos served as a physiological tissue environment. Here, different signal progressions during ingrowth could be observed in a time period of 3–4 days. We tested biodegradable poly(DL-lactide-co-glycolide) and biostable plasma-polymerized coatings [1] compared to an uncoated MSI.