Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanna Jean Khoury is active.

Publication


Featured researches published by Hanna Jean Khoury.


The New England Journal of Medicine | 2013

A Phase 2 Trial of Ponatinib in Philadelphia Chromosome–Positive Leukemias

Jorge Cortes; Dongho Kim; Javier Pinilla-Ibarz; P. le Coutre; Ronald Paquette; Charles Chuah; Franck E. Nicolini; Jane F. Apperley; Hanna Jean Khoury; Moshe Talpaz; John F. DiPersio; Daniel J. DeAngelo; Elisabetta Abruzzese; Delphine Rea; Michele Baccarani; Markus Müller; Carlo Gambacorti-Passerini; Stephane Wong; Stephanie Lustgarten; Victor M. Rivera; Timothy P. Clackson; Christopher D. Turner; Frank G. Haluska; François Guilhot; Michael W. Deininger; Andreas Hochhaus; Timothy P. Hughes; John M. Goldman; Neil P. Shah; H. Kantarjian

BACKGROUND Ponatinib is a potent oral tyrosine kinase inhibitor of unmutated and mutated BCR-ABL, including BCR-ABL with the tyrosine kinase inhibitor-refractory threonine-to-isoleucine mutation at position 315 (T315I). We conducted a phase 2 trial of ponatinib in patients with chronic myeloid leukemia (CML) or Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-positive ALL). METHODS We enrolled 449 heavily pretreated patients who had CML or Ph-positive ALL with resistance to or unacceptable side effects from dasatinib or nilotinib or who had the BCR-ABL T315I mutation. Ponatinib was administered at an initial dose of 45 mg once daily. The median follow-up was 15 months. RESULTS Among 267 patients with chronic-phase CML, 56% had a major cytogenetic response (51% of patients with resistance to or unacceptable side effects from dasatinib or nilotinib and 70% of patients with the T315I mutation), 46% had a complete cytogenetic response (40% and 66% in the two subgroups, respectively), and 34% had a major molecular response (27% and 56% in the two subgroups, respectively). Responses were observed regardless of the baseline BCR-ABL kinase domain mutation status and were durable; the estimated rate of a sustained major cytogenetic response of at least 12 months was 91%. No single BCR-ABL mutation conferring resistance to ponatinib was detected. Among 83 patients with accelerated-phase CML, 55% had a major hematologic response and 39% had a major cytogenetic response. Among 62 patients with blast-phase CML, 31% had a major hematologic response and 23% had a major cytogenetic response. Among 32 patients with Ph-positive ALL, 41% had a major hematologic response and 47% had a major cytogenetic response. Common adverse events were thrombocytopenia (in 37% of patients), rash (in 34%), dry skin (in 32%), and abdominal pain (in 22%). Serious arterial thrombotic events were observed in 9% of patients; these events were considered to be treatment-related in 3%. A total of 12% of patients discontinued treatment because of an adverse event. CONCLUSIONS Ponatinib had significant antileukemic activity across categories of disease stage and mutation status. (Funded by Ariad Pharmaceuticals and others; PACE ClinicalTrials.gov number, NCT01207440 .).


Haematologica | 2010

Potent, transient inhibition of BCR-ABL with dasatinib 100 mg daily achieves rapid and durable cytogenetic responses and high transformation-free survival rates in chronic phase chronic myeloid leukemia patients with resistance, suboptimal response or intolerance to imatinib

Neil P. Shah; Dong-Wook Kim; Hagop M. Kantarjian; Philippe Rousselot; Pedro Enrique Dorlhiac Llacer; Alicia Enrico; Jorge Vela-Ojeda; Richard T. Silver; Hanna Jean Khoury; Martin C. Müller; Alexandre Lambert; Yousif Matloub; Andreas Hochhaus

Background Dasatinib 100 mg once daily achieves intermittent BCR-ABL kinase inhibition and is approved for chronic-phase chronic myeloid leukemia patients resistant or intolerant to imatinib. To better assess durability of response to and tolerability of dasatinib, data from a 2-year minimum follow-up for a dose-optimization study in chronic-phase chronic myeloid leukemia are reported here. Design and Methods In a phase 3 study, 670 chronic-phase chronic myeloid leukemia patients with resistance, intolerance, or suboptimal response to imatinib were randomized to dasatinib 100 mg once-daily, 50 mg twice-daily, 140 mg once-daily, or 70 mg twice-daily. Results Data from a 2-year minimum follow-up demonstrate that dasatinib 100 mg once daily achieves major cytogenetic response and complete cytogenetic response rates comparable to those in the other treatment arms, and reduces the frequency of key side effects. Comparable 2-year progression-free survival and overall survival rates were observed (80% and 91%, respectively, for 100 mg once daily, and 75%–76% and 88%–94%, respectively, in other arms). Complete cytogenetic responses were achieved rapidly, typically by 6 months. In patients treated with dasatinib 100 mg once daily for 6 months without complete cytogenetic response, the likelihood of achieving such a response by 2 years was 50% for patients who had achieved a partial cytogenetic response, and only 8% or less for patients with minor, minimal, or no cytogenetic response. Less than 3% of patients suffered disease transformation to accelerated or blast phase. Conclusions Intermittent kinase inhibition can achieve rapid and durable responses, indistinguishable from those achieved with more continuous inhibition.


Leukemia | 2008

Efficacy and safety of dasatinib in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blast phase

Jorge Cortes; Dongho Kim; Emmanuel Raffoux; Giovanni Martinelli; Ellen K. Ritchie; Lydia Roy; Steven Coutre; S. Corm; Nelson Hamerschlak; Jih-Luh Tang; Andreas Hochhaus; Hanna Jean Khoury; Tim H. Brümmendorf; M. Michallet; Giovanna Rege-Cambrin; Carlo Gambacorti-Passerini; Jerry Radich; Thomas Ernst; Chao Zhu; J. M.A. Van Tornout; Moshe Talpaz

Dasatinib is an inhibitor of BCR-ABL and SRC-family kinases for patients with imatinib-resistant or -intolerant chronic myelogenous leukemia (CML). In this international phase II trial, dasatinib was administered orally (70 mg twice daily) to patients with myeloid blast phase (MBP, n=109) or lymphoid blast phase (LBP, n=48) CML. After a minimum follow-up of 12 months (range 0.03–20.7 months), major hematologic responses were induced in 34% (MBP-CML) and 35% (LBP-CML) of patients. Major cytogenetic responses were attained in 33% (MBP-CML) and 52% (LBP-CML) of patients and complete cytogenetic responses were attained in 26 and 46%, respectively. Median progression-free survival was 6.7 (MBP-CML) and 3.0 (LBP-CML) months. Median overall survival was 11.8 (MBP-CML) and 5.3 (LBP-CML) months. Overall, dasatinib had acceptable tolerability. Fluid retention events were more frequent in the MBP-CML than the LBP-CML cohort: pleural effusion occurred in 36 and 13% (all grades) and 15 and 6% (grades 3/4), respectively. Other non-hematologic side effects were primarily grade 1/2; grade 3/4 events were recorded in ⩽6% of patients, except febrile neutropenia (15%). Cytopenias were noted in the majority of patients, and were manageable with dose interruptions/reductions. Dasatinib is associated with a promising rate of response in this high-risk population.


Cancer Cell | 2012

Phosphoglycerate Mutase 1 Coordinates Glycolysis and Biosynthesis to Promote Tumor Growth

Taro Hitosugi; Lu Zhou; Shannon Elf; Jun Fan; Hee Bum Kang; Jae Ho Seo; Changliang Shan; Qing Dai; Liang Zhang; Jianxin Xie; Ting Lei Gu; Peng Jin; Maša Alečković; Gary LeRoy; Yibin Kang; Jessica Sudderth; Ralph J. DeBerardinis; Chi Hao Luan; Georgia Z. Chen; Susan Muller; Dong M. Shin; Taofeek K. Owonikoko; Sagar Lonial; Martha Arellano; Hanna Jean Khoury; Fadlo R. Khuri; Benjamin H. Lee; Keqiang Ye; Titus J. Boggon; Sumin Kang

It is unclear how cancer cells coordinate glycolysis and biosynthesis to support rapidly growing tumors. We found that the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1), commonly upregulated in human cancers due to loss of TP53, contributes to biosynthesis regulation in part by controlling intracellular levels of its substrate, 3-phosphoglycerate (3-PG), and product, 2-phosphoglycerate (2-PG). 3-PG binds to and inhibits 6-phosphogluconate dehydrogenase in the oxidative pentose phosphate pathway (PPP), while 2-PG activates 3-phosphoglycerate dehydrogenase to provide feedback control of 3-PG levels. Inhibition of PGAM1 by shRNA or a small molecule inhibitor PGMI-004A results in increased 3-PG and decreased 2-PG levels in cancer cells, leading to significantly decreased glycolysis, PPP flux and biosynthesis, as well as attenuated cell proliferation and tumor growth.


Blood | 2010

Comparable survival after HLA–well-matched unrelated or matched sibling donor transplantation for acute myeloid leukemia in first remission with unfavorable cytogenetics at diagnosis

Vikas Gupta; Martin S. Tallman; Wensheng He; Brent R. Logan; Edward A. Copelan; Robert Peter Gale; Hanna Jean Khoury; Thomas R. Klumpp; John Koreth; Hillard M. Lazarus; David I. Marks; Rodrigo Martino; David A. Rizzieri; Jacob M. Rowe; Mitchell Sabloff; Edmund K. Waller; John F. DiPersio; Donald Bunjes; Daniel J. Weisdorf

We compared the outcomes of unrelated donor (URD, n = 358) with human leukocyte antigen (HLA)-matched sibling donor (MSD, n = 226) transplantations in patients with acute myeloid leukemia (AML) in first complete remission (CR1) having unfavorable cytogenetics at diagnosis. Unfavorable cytogenetic abnormalities were: complex (≥ 3 abnormalities), 32%; and noncomplex involving chromosome 7, 25%; chromosome 5, 9%; 11q or MLL rearrangements, 18%; t(6;9), 5%; and other noncomplex, 10%. URDs were HLA-well-matched (n = 254; 71%) or partially-matched (n = 104; 29%). Three-year leukemia-free survival (LFS) for MSD was 42% (95% confidence interval [CI], 35%-48%) compared with 34% (95% CI, 28%-41%) for HLA-well-matched URD and 29% (95% CI, 20%-39%) for partially-matched URD (P = .08). In multivariate analysis, HLA-well-matched URD and MSD yielded similar LFS (relative risk [RR] = 1.1, 95% CI, 0.86-1.40, P = .44) and overall survival (OS; RR = 1.06, 95% CI, 0.83-1.37, P = .63). LFS and OS were significantly inferior for HLA-partially-matched URD recipients, those with prior myelodysplastic syndrome, and those older than 50 years. All cytogenetic cohorts had similar outcomes. Patients with chronic graft-versus-host disease had a significantly lower risk of relapse (RR = 0.68, 95% CI, 0.47-0.99, P = .05). Hematopoietic cell transplantation (HCT) using HLA-well-matched URD and MSD resulted in similar LFS and OS in AML patients in CR1 with unfavorable cytogenetics. Outcomes of HCT from HLA-partially- matched URD were inferior.


Journal of Clinical Oncology | 2011

Reducing the Risk for Transplantation-Related Mortality After Allogeneic Hematopoietic Cell Transplantation: How Much Progress Has Been Made?

John Horan; Brent R. Logan; Manza A. Agovi-Johnson; Hillard M. Lazarus; Andrea Bacigalupo; Karen K. Ballen; Christopher Bredeson; Matthew Carabasi; Vikas Gupta; Gregory A. Hale; Hanna Jean Khoury; Mark Juckett; Mark R. Litzow; Rodrigo Martino; Philip L. McCarthy; Franklin O. Smith; J. Douglas Rizzo; Marcelo C. Pasquini

PURPOSE Transplantation-related mortality (TRM) is a major barrier to the success of allogeneic hematopoietic cell transplantation (HCT). PATIENTS AND METHODS We assessed changes in the incidence of TRM and overall survival from 1985 through 2004 in 5,972 patients younger than age 50 years who received myeloablative conditioning and HCT for acute myeloid leukemia (AML) in first complete remission (CR1) or second complete remission (CR2). RESULTS Among HLA-matched sibling donor transplantation recipients, the relative risks (RRs) for TRM were 0.5 and 0.3 for 2000 to 2004 compared with those for 1985 to 1989 in patients in CR1 and CR2, respectively (P < .001). The RRs for all causes of mortality in the latter period were 0.73 (P = .001) and 0.60 (P = .005) for the CR1 and CR2 groups, respectively. Among unrelated donor transplantation recipients, the RRs for TRM were 0.73 (P = .095) and 0.58 (P < .001) for 2000 to 2004 compared with those in 1990 to 1994 in the CR1 and CR2 groups, respectively. Reductions in mortality were observed in the CR2 group (RR, 0.74; P = .03) but not in the CR1 group. CONCLUSION Our results suggest that innovations in transplantation care since the 1980s and 1990s have reduced the risk of TRM in patients undergoing allogeneic HCT for AML and that this reduction has been accompanied by improvements in overall survival.


Molecular Cell | 2014

Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex.

Jun Fan; Changliang Shan; Hee-Bum Kang; Shannon Elf; Jianxin Xie; Meghan Tucker; Ting-Lei Gu; Mike Aguiar; Scott Lonning; Huaibin Chen; Moosa Mohammadi; Laura-Mae P Britton; Benjamin A. Garcia; Maša Alečković; Yibin Kang; Stefan Kaluz; Narra S. Devi; Erwin G. Van Meir; Taro Hitosugi; Jae Ho Seo; Sagar Lonial; Manila Gaddh; Martha Arellano; Hanna Jean Khoury; Fadlo R. Khuri; Titus J. Boggon; Sumin Kang; Jing Chen

Mitochondrial pyruvate dehydrogenase complex (PDC) is crucial for glucose homeostasis in mammalian cells. The current understanding of PDC regulation involves inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) by PDH kinase (PDK), whereas dephosphorylation of PDH by PDH phosphatase (PDP) activates PDC. Here, we report that lysine acetylation of PDHA1 and PDP1 is common in epidermal growth factor (EGF)-stimulated cells and diverse human cancer cells. K321 acetylation inhibits PDHA1 by recruiting PDK1, and K202 acetylation inhibits PDP1 by dissociating its substrate PDHA1, both of which are important in promoting glycolysis in cancer cells and consequent tumor growth. Moreover, we identified mitochondrial ACAT1 and SIRT3 as the upstream acetyltransferase and deacetylase, respectively, of PDHA1 and PDP1, while knockdown of ACAT1 attenuates tumor growth. Furthermore, Y381 phosphorylation of PDP1 dissociates SIRT3 and recruits ACAT1 to PDC. Together, hierarchical, distinct posttranslational modifications act in concert to control molecular composition of PDC and contribute to the Warburg effect.


Leukemia | 2016

European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia

Juan-Luis Steegmann; M. Baccarani; Massimo Breccia; L.F. Casado; Valentin Garcia-Gutierrez; Andreas Hochhaus; Dong-Wook Kim; Theo-D. Kim; Hanna Jean Khoury; P. le Coutre; Jiří Mayer; Dragana Milojkovic; K Porkka; Delphine Rea; Giovanni Rosti; Susanne Saussele; R. Hehlmann; Richard E. Clark

Most reports on chronic myeloid leukaemia (CML) treatment with tyrosine kinase inhibitors (TKIs) focus on efficacy, particularly on molecular response and outcome. In contrast, adverse events (AEs) are often reported as infrequent, minor, tolerable and manageable, but they are increasingly important as therapy is potentially lifelong and multiple TKIs are available. For this reason, the European LeukemiaNet panel for CML management recommendations presents an exhaustive and critical summary of AEs emerging during CML treatment, to assist their understanding, management and prevention. There are five major conclusions. First, the main purpose of CML treatment is the antileukemic effect. Suboptimal management of AEs must not compromise this first objective. Second, most patients will have AEs, usually early, mostly mild to moderate, and which will resolve spontaneously or are easily controlled by simple means. Third, reduction or interruption of treatment must only be done if optimal management of the AE cannot be accomplished in other ways, and frequent monitoring is needed to detect resolution of the AE as early as possible. Fourth, attention must be given to comorbidities and drug interactions, and to new events unrelated to TKIs that are inevitable during such a prolonged treatment. Fifth, some TKI-related AEs have emerged which were not predicted or detected in earlier studies, maybe because of suboptimal attention to or absence from the preclinical data. Overall, imatinib has demonstrated a good long-term safety profile, though recent findings suggest underestimation of symptom severity by physicians. Second and third generation TKIs have shown higher response rates, but have been associated with unexpected problems, some of which could be irreversible. We hope these recommendations will help to minimise adverse events, and we believe that an optimal management of them will be rewarded by better TKI compliance and thus better CML outcomes, together with better quality of life.


Blood | 2011

Targeting levels or oligomerization of nucleophosmin 1 induces differentiation and loss of survival of human AML cells with mutant NPM1

Ramesh Balusu; Warren Fiskus; Rekha Rao; Daniel G. Chong; Srilatha Nalluri; Uma Mudunuru; Hongwei Ma; Lei Chen; Sreedhar Venkannagari; Kyungsoo Ha; Sunil Abhyankar; Casey Williams; Joseph McGuirk; Hanna Jean Khoury; Celalettin Ustun; Kapil N. Bhalla

Nucleophosmin 1 (NPM1) is an oligomeric, nucleolar phosphoprotein that functions as a molecular chaperone for both proteins and nucleic acids. NPM1 is mutated in approximately one-third of patients with AML. The mutant NPM1c+ contains a 4-base insert that results in extra C-terminal residues encoding a nuclear export signal, which causes NPM1c+ to be localized in the cytoplasm. Here, we determined the effects of targeting NPM1 in cultured and primary AML cells. Treatment with siRNA to NPM1 induced p53 and p21, decreased the percentage of cells in S-phase of the cell cycle, as well as induced differentiation of the AML OCI-AML3 cells that express both NPMc+ and unmutated NPM1. Notably, knockdown of NPM1 by shRNA abolished lethal AML phenotype induced by OCI-AML3 cells in NOD/SCID mice. Knockdown of NPM1 also sensitized OCI-AML3 to all-trans retinoic acid (ATRA) and cytarabine. Inhibition of NPM1 oligomerization by NSC348884 induced apoptosis and sensitized OCI-AML3 and primary AML cells expressing NPM1c+ to ATRA. This effect was significantly less in AML cells coexpressing FLT3-ITD, or in AML or normal CD34+ progenitor cells expressing wild-type NPM1. Thus, attenuating levels or oligomerization of NPM1 selectively induces apoptosis and sensitizes NPM1c+ expressing AML cells to treatment with ATRA and cytarabine.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A pilot study of high-throughput, sequence-based mutational profiling of primary human acute myeloid leukemia cell genomes.

Timothy J. Ley; Patrick Minx; Matthew J. Walter; Rhonda E. Ries; Hui Sun; Michael D. McLellan; John F. DiPersio; Daniel C. Link; Michael H. Tomasson; Timothy A. Graubert; Howard L. McLeod; Hanna Jean Khoury; Mark A. Watson; William D. Shannon; Kathryn Trinkaus; Sharon Heath; James W. Vardiman; Michael A. Caligiuri; Clara D. Bloomfield; Jeffrey Milbrandt; Elaine R. Mardis; Richard Wilson

In this pilot study, we used primary human acute myeloid leukemia (AML) cell genomes as templates for exonic PCR amplification, followed by high-throughput resequencing, analyzing ≈7 million base pairs of DNA from 140 AML samples and 48 controls. We identified six previously described, and seven previously undescribed sequence changes that may be relevant for AML pathogenesis. Because the sequencing templates were generated from primary AML cells, the technique favors the detection of mutations from the most dominant clones within the tumor cell mixture. This strategy represents a viable approach for the detection of potentially relevant, nonrandom mutations in primary human cancer cell genomes.

Collaboration


Dive into the Hanna Jean Khoury's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge Cortes

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hagop M. Kantarjian

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John F. DiPersio

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong-Wook Kim

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge