Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanna Mandel is active.

Publication


Featured researches published by Hanna Mandel.


Neurology | 2007

Recombinant human acid α-glucosidase: Major clinical benefits in infantile-onset Pompe disease

Priya S. Kishnani; Deya Corzo; Marc Nicolino; Barry J. Byrne; Hanna Mandel; Wuh-Liang Hwu; Nancy Leslie; J. Levine; C. Spencer; M. McDonald; ‡ Ji-Yao Li; J. Dumontier; M. Halberthal; Yin-Hsiu Chien; Robert J. Hopkin; S. Vijayaraghavan; D. Gruskin; D. Bartholomew; A. van der Ploeg; John P. Clancy; Rossella Parini; G. Morin; Michael Beck; G. S. De la Gastine; M. Jokic; Beth L. Thurberg; Susan Richards; Deeksha Bali; M. Davison; M. A. Worden

Background: Pompe disease is a progressive metabolic neuromuscular disorder resulting from deficiency of lysosomal acid α-glucosidase (GAA). Infantile-onset Pompe disease is characterized by cardiomyopathy, respiratory and skeletal muscle weakness, and early death. The safety and efficacy of recombinant human (rh) GAA were evaluated in 18 patients with rapidly progressing infantile-onset Pompe disease. Methods: Patients were diagnosed at 6 months of age and younger and exhibited severe GAA deficiency and cardiomyopathy. Patients received IV infusions of rhGAA at 20 mg/kg (n = 9) or 40 mg/kg (n = 9) every other week. Analyses were performed 52 weeks after the last patient was randomized to treatment. Results: All patients (100%) survived to 18 months of age. A Cox proportional hazards analysis demonstrated that treatment reduced the risk of death by 99%, reduced the risk of death or invasive ventilation by 92%, and reduced the risk of death or any type of ventilation by 88%, as compared to an untreated historical control group. There was no clear advantage of the 40-mg/kg dose with regard to efficacy. Eleven of the 18 patients experienced 164 infusion-associated reactions; all were mild or moderate in intensity. Conclusions: Recombinant human acid α-glucosidase is safe and effective for treatment of infantile-onset Pompe disease. Eleven patients experienced adverse events related to treatment, but none discontinued. The young age at which these patients initiated therapy may have contributed to their improved response compared to previous trials with recombinant human acid α-glucosidase in which patients were older.


Nature Genetics | 2001

Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy

Ann Saada; Avraham Shaag; Hanna Mandel; Yoram Nevo; Staffan Eriksson; Orly Elpeleg

The mitochondrial deoxyribonucleotide (dNTP) pool is separated from the cytosolic pool because the mitochondria inner membrane is impermeable to charged molecules. The mitochondrial pool is maintained by either import of cytosolic dNTPs through dedicated transporters or by salvaging deoxynucleosides within the mitochondria; apparently, enzymes of the de novo dNTP synthesis pathway are not present in the mitochondria. In non-replicating cells, where cytosolic dNTP synthesis is down-regulated, mtDNA synthesis depends solely on the mitochondrial salvage pathway enzymes, the deoxyribonucleosides kinases. Two of the four human deoxyribonucleoside kinases, deoxyguanosine kinase (dGK) and thymidine kinase-2 (TK2), are expressed in mitochondria. Human dGK efficiently phosphorylates deoxyguanosine and deoxyadenosine, whereas TK2 phosphorylates deoxythymidine, deoxycytidine and deoxyuridine. Here we identify two mutations in TK2, histidine 90 to asparagine and isoleucine 181 to asparagine, in four individuals who developed devastating myopathy and depletion of muscular mitochondrial DNA in infancy. In these individuals, the activity of TK2 in muscle mitochondria is reduced to 14–45% of the mean value in healthy control individuals. Mutations in TK2 represent a new etiology for mitochondrial DNA depletion, underscoring the importance of the mitochondrial dNTP pool in the pathogenesis of mitochondrial depletion.


The New England Journal of Medicine | 1996

Coexistence of Hereditary Homocystinuria and Factor V Leiden — Effect on Thrombosis

Hanna Mandel; Benjamin Brenner; Moshe Berant; Nurith Rosenberg; Naomi Lanir; Cornelis Jakobs; Brian Fowler; Uri Seligsohn

BACKGROUND Venous and arterial thromboembolism occurs in only about one third of patients homozygous for homocystinuria, which suggests that other, contributory factors are necessary for the development of thrombosis in these patients. Factor V Leiden, an R506Q mutation in the gene coding for factor V, is the most common cause of familial thrombosis and could be a potentiating factor. METHODS We determined activated partial-thromboplastin times in the presence and absence of activated protein C and tested for the factor V Leiden mutation in 45 members of seven unrelated consanguineous kindreds in which at least 1 member was homozygous for homocystinuria. RESULT Thrombosis (venous, arterial, or both) occurred in 6 of 11 patients with homocystinuria (age, 0.2 to 8 years). All six also had the factor V Leiden mutation. One patient with prenatally diagnosed homocystinuria who was also heterozygous for factor V Leiden has received warfarin therapy since birth and has not had thrombosis (age, 18 months). Of four patients with homocystinuria who did not have factor V Leiden, none had thrombosis (ages at this writing, 1 to 17 years). Three women who were heterozygous for both homocystinuria and factor V Leiden had recurrent fetal loss and placental infarctions. CONCLUSIONS Patients with concurrent homocystinuria and factor V Leiden can have an increased risk of thrombosis. Screening for factor V Leiden may be indicated in patient with homocystinuria and their family members.


Molecular Genetics and Metabolism | 2010

Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants

Priya S. Kishnani; Paula Goldenberg; Stephanie L. Dearmey; James H. Heller; Daniel K. Benjamin; Sarah P. Young; Deeksha Bali; Sue Ann Smith; Jennifer S. Li; Hanna Mandel; Dwight D. Koeberl; Amy S. Rosenberg; Yuan-Tsong Chen

Deficiency of acid alpha glucosidase (GAA) causes Pompe disease, which is usually fatal if onset occurs in infancy. Patients synthesize a non-functional form of GAA or are unable to form native enzyme. Enzyme replacement therapy with recombinant human GAA (rhGAA) prolongs survival in infantile Pompe patients but may be less effective in cross-reactive immunologic material (CRIM)-negative patients. We retrospectively analyzed the influence of CRIM status on outcome in 21 CRIM-positive and 11 CRIM-negative infantile Pompe patients receiving rhGAA. Patients were from the clinical setting and from clinical trials of rhGAA, were 6 months of age, were not invasively ventilated, and were treated with IV rhGAA at a cumulative or total dose of 20 or 40 mg/kg/2 weeks. Outcome measures included survival, invasive ventilator-free survival, cardiac status, gross motor development, development of antibodies to rhGAA, and levels of urinary Glc(4). Following 52 weeks of treatment, 6/11 (54.5%) CRIM-negative and 1/21 (4.8%) CRIM-positive patients were deceased or invasively ventilated (p<0.0001). By age 27.1 months, all CRIM-negative patients and 4/21 (19.0%) CRIM-positive patients were deceased or invasively ventilated. Cardiac function and gross motor development improved significantly more in the CRIM-positive group. IgG antibodies to rhGAA developed earlier and serotiters were higher and more sustained in the CRIM-negative group. CRIM-negative status predicted reduced overall survival and invasive ventilator-free survival and poorer clinical outcomes in infants with Pompe disease treated with rhGAA. The effect of CRIM status on outcome appears to be mediated by antibody responses to the exogenous protein.


Pediatric Research | 2009

Early Treatment With Alglucosidase Alfa Prolongs Long-Term Survival of Infants With Pompe Disease

Priya S. Kishnani; Deya Corzo; Nancy Leslie; Daniel Gruskin; Ans T. van der Ploeg; John P. Clancy; Rosella Parini; Gilles Morin; Michael Beck; Mislen S Bauer; Mikael Jokic; Chen-En Tsai; Brian W H Tsai; Claire Morgan; Tara O'Meara; Susan Richards; Elisa C Tsao; Hanna Mandel

In a previous 52-wk trial, treatment with alglucosidase alfa markedly improved cardiomyopathy, ventilatory function, and overall survival among 18 children <7 mo old with infantile-onset Pompe disease. Sixteen of the 18 patients enrolled in an extension study, where they continued to receive alglucosidase alfa at either 20 mg/kg biweekly (n = 8) or 40 mg/kg biweekly (n = 8), for up to a total of 3 y. These children continued to exhibit the benefits of alglucosidase alfa at the age of 36 mo. Cox regression analyses showed that over the entire study period, alglucosidase alfa treatment reduced the risk of death by 95%, reduced the risk of invasive ventilation or death by 91%, and reduced the risk of any type of ventilation or death by 87%, compared with an untreated historical control group. Cardiomyopathy continued to improve and 11 patients learned and sustained substantial motor skills. No significant differences in either safety or efficacy parameters were observed between the 20 and 40 mg/kg biweekly doses. Overall, long-term alglucosidase alfa treatment markedly extended survival as well as ventilation-free survival and improved cardiomyopathy.


Journal of Clinical Investigation | 2000

Molecular basis of variant pseudo-Hurler polydystrophy (mucolipidosis IIIC)

Annick Raas-Rothschild; Valérie Cormier-Daire; Ming Bao; Emmanuelle Génin; Rémi Salomon; Kevin Brewer; Marsha Zeigler; Hanna Mandel; Steve Toth; Bruce A. Roe; Arnold Munnich; William M. Canfield

Mucolipidosis IIIC, or variant pseudo-Hurler polydystrophy, is an autosomal recessive disease of lysosomal hydrolase trafficking. Unlike the related diseases, mucolipidosis II and IIIA, the enzyme affected in mucolipidosis IIIC (N-Acetylglucosamine-1-phosphotransferase [GlcNAc-phosphotransferase]) retains full transferase activity on synthetic substrates but lacks activity on lysosomal hydrolases. Bovine GlcNAc-phosphotransferase has recently been isolated as a multisubunit enzyme with the subunit structure alpha(2)beta(2)gamma(2). We cloned the cDNA for the human gamma-subunit and localized its gene to chromosome 16p. We also showed, in a large multiplex Druze family that exhibits this disorder, that MLIIIC also maps to this chromosomal region. Sequence analysis of the gamma-subunit cDNA in patients from 3 families identified a frameshift mutation, in codon 167 of the gamma subunit, that segregated with the disease, indicating MLIIIC results from mutations in the phosphotransferase gamma-subunit gene. This is to our knowledge the first description of the molecular basis for a human mucolipidosis and suggests that the gamma subunit functions in lysosomal hydrolase recognition.


Annals of Neurology | 2001

Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy.

Jan Loeffen; Orly Elpeleg; Jan A.M. Smeitink; Roel Smeets; Sylvia Stockler-Ipsiroglu; Hanna Mandel; R. C. A. Sengers; Frans J.M. Trijbels; Lambert van den Heuvel

Human complex I is built up and regulated by genes encoded by the mitochondrial DNA (mtDNA) as well as the nuclear DNA (nDNA). In recent years, attention mainly focused on the relation between complex I deficiency and mtDNA mutations. However, a high percentage of consanguinity and an autosomal‐recessive mode of inheritance observed within our patient group as well as the absence of common mtDNA mutations make a nuclear genetic cause likely. The NDUFS2 protein is part of complex I of many pro‐ and eukaryotes. The nuclear gene coding for this protein is therefore an important candidate for mutational detection studies in enzymatic complex I deficient patients. Screening of patient NDUFS2 cDNA by reverse transcriptase–polymerase chain reaction (RT‐PCR) in combination with direct DNA sequencing revealed three missense mutations resulting in the substitution of conserved amino acids in three families. Ann Neurol 2001;49:195–201


American Journal of Human Genetics | 2009

Acute infantile liver failure due to mutations in the TRMU gene.

Avraham Zeharia; Avraham Shaag; Orit Pappo; Anne-Marie Mager-Heckel; Ann Saada; Marine Beinat; Olga Karicheva; Hanna Mandel; Noa Ofek; Reeval Segel; Daphna Marom; Agnès Rötig; Ivan Tarassov; Orly Elpeleg

Acute liver failure in infancy accompanied by lactic acidemia was previously shown to result from mtDNA depletion. We report on 13 unrelated infants who presented with acute liver failure and lactic acidemia with normal mtDNA content. Four died during the acute episodes, and the survivors never had a recurrence. The longest follow-up period was 14 years. Using homozygosity mapping, we identified mutations in the TRMU gene, which encodes a mitochondria-specific tRNA-modifying enzyme, tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase. Accordingly, the 2-thiouridylation levels of the mitochondrial tRNAs were markedly reduced. Given that sulfur is a TRMU substrate and its availability is limited during the neonatal period, we propose that there is a window of time whereby patients with TRMU mutations are at increased risk of developing liver failure.


Nature Genetics | 2003

Amnionless, essential for mouse gastrulation, is mutated in recessive hereditary megaloblastic anemia

Stephan M. Tanner; Maria Aminoff; Fred A. Wright; Sandya Liyanarachchi; Mervi Kuronen; Anne Saarinen; Orit Massika; Hanna Mandel; Harald Broch; Albert de la Chapelle

The amnionless gene, Amn, on mouse chromosome 12 encodes a type I transmembrane protein that is expressed in the extraembryonic visceral layer during gastrulation. Mice homozygous with respect to the amn mutation generated by a transgene insertion have no amnion. The embryos are severely compromised, surviving to the tenth day of gestation but seem to lack the mesodermal layers that normally produce the trunk. The Amn protein has one transmembrane domain separating a larger, N-terminal extracellular region and a smaller, C-terminal cytoplasmic region. The extracellular region harbors a cysteine-rich domain resembling those occurring in Chordin, found in Xenopus laevis embryos, and Sog, found in Drosophila melanogaster. As these cysteine-rich domains bind bone morphogenetic proteins (Bmps), it has been speculated that the cysteine-rich domain in Amn also binds Bmps. We show that homozygous mutations affecting exons 1–4 of human AMN lead to selective malabsorption of vitamin B12 (a phenotype associated with megaloblastic anemia 1, MGA1; OMIM 261100; refs. 5,6) in otherwise normal individuals, suggesting that the 5′ end of AMN is dispensable for embryonic development but necessary for absorption of vitamin B12. When the 5′ end of AMN is truncated by mutations, translation is initiated from alternative downstream start codons.


Nature Genetics | 2010

Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization

Andrew R. Cullinane; Anna Straatman-Iwanowska; Andreas Zaucker; Yoshiyuki Wakabayashi; Christopher K Bruce; Guanmei Luo; Fatimah Rahman; Figen Gürakan; Eda Utine; Tanju Ozkan; Jonas Denecke; Jurica Vukovic; Maja Di Rocco; Hanna Mandel; Hakan Cangul; Randolph P. Matthews; Steve G. Thomas; Joshua Z. Rappoport; Irwin M. Arias; Hartwig Wolburg; A.S. Knisely; Deirdre Kelly; Ferenc Müller; Eamonn R. Maher; Paul Gissen

Arthrogryposis, renal dysfunction and cholestasis syndrome (ARC) is a multisystem disorder associated with abnormalities in polarized liver and kidney cells. Mutations in VPS33B account for most cases of ARC. We identified mutations in VIPAR (also called C14ORF133) in individuals with ARC without VPS33B defects. We show that VIPAR forms a functional complex with VPS33B that interacts with RAB11A. Knockdown of vipar in zebrafish resulted in biliary excretion and E-cadherin defects similar to those in individuals with ARC. Vipar- and Vps33b-deficient mouse inner medullary collecting duct (mIMDC-3) cells expressed membrane proteins abnormally and had structural and functional tight junction defects. Abnormal Ceacam5 expression was due to mis-sorting toward lysosomal degradation, but reduced E-cadherin levels were associated with transcriptional downregulation. The VPS33B-VIPAR complex thus has diverse functions in the pathways regulating apical-basolateral polarity in the liver and kidney.

Collaboration


Dive into the Hanna Mandel's collaboration.

Top Co-Authors

Avatar

Moshe Berant

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Orly Elpeleg

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Espeel

Free University of Brussels

View shared research outputs
Top Co-Authors

Avatar

Ann Saada

Shaare Zedek Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gad Bar-Joseph

Technion – Israel Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge