Hanna Nilsson
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hanna Nilsson.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Tommy Cedervall; Iseult Lynch; Stina Lindman; Tord Berggård; Eva Thulin; Hanna Nilsson; Kenneth A. Dawson; Sara Linse
Due to their small size, nanoparticles have distinct properties compared with the bulk form of the same materials. These properties are rapidly revolutionizing many areas of medicine and technology. Despite the remarkable speed of development of nanoscience, relatively little is known about the interaction of nanoscale objects with living systems. In a biological fluid, proteins associate with nanoparticles, and the amount and presentation of the proteins on the surface of the particles leads to an in vivo response. Proteins compete for the nanoparticle “surface,” leading to a protein “corona” that largely defines the biological identity of the particle. Thus, knowledge of rates, affinities, and stoichiometries of protein association with, and dissociation from, nanoparticles is important for understanding the nature of the particle surface seen by the functional machinery of cells. Here we develop approaches to study these parameters and apply them to plasma and simple model systems, albumin and fibrinogen. A series of copolymer nanoparticles are used with variation of size and composition (hydrophobicity). We show that isothermal titration calorimetry is suitable for studying the affinity and stoichiometry of protein binding to nanoparticles. We determine the rates of protein association and dissociation using surface plasmon resonance technology with nanoparticles that are thiol-linked to gold, and through size exclusion chromatography of protein–nanoparticle mixtures. This method is less perturbing than centrifugation, and is developed into a systematic methodology to isolate nanoparticle-associated proteins. The kinetic and equilibrium binding properties depend on protein identity as well as particle surface characteristics and size.
Advances in Cancer Research | 2003
Catharina Svanborg; Helena Ågerstam; Annika Aronson; Rolf Bjerkvig; Caroline Düringer; Walter Fischer; Lotta Gustafsson; Oskar Hallgren; Irene Leijonhuvud; Sara Linse; Ann-Kristin Mossberg; Hanna Nilsson; Jenny Pettersson; Malin Svensson
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex that induces apoptosis-like death in tumor cells, but leaves fully differentiated cells unaffected. This review summarizes the information on the in vivo effects of HAMLET in patients and tumor models on the tumor cell biology, and on the molecular characteristics of the complex. HAMLET limits the progression of human glioblastomas in a xenograft model and removes skin papillomas in patients. This broad anti-tumor activity includes >40 different lymphomas and carcinomas and apoptosis is independent of p53 or bcl-2. In tumor cells HAMLET enters the cytoplasm, translocates to the perinuclear area, and enters the nuclei where it accumulates. HAMLET binds strongly to histones and disrupts the chromatin organization. In the cytoplasm, HAMLET targets ribosomes and activates caspases. The formation of HAMLET relies on the propensity of alpha-lactalbumin to alter its conformation when the strongly bound Ca2+ ion is released and the protein adopts the apo-conformation that exposes a new fatty acid binding site. Oleic acid (C18:1,9 cis) fits this site with high specificity, and stabilizes the altered protein conformation. The results illustrate how protein folding variants may be beneficial, and how their formation in peripheral tissues may depend on the folding change and the availability of the lipid cofactor. One example is the acid pH in the stomach of the breast-fed child that promotes the formation of HAMLET. This mechanism may contribute to the protective effect of breastfeeding against childhood tumors. We propose that HAMLET should be explored as a novel approach to tumor therapy.
Protein Science | 2009
Michael Gottschalk; Hanna Nilsson; Helena Roos; Bertil Halle
We have used proton magnetic relaxation dispersion (MRD) to study the self‐association of bovine β‐lactoglobulin variant A (BLG‐A) as a function of temperature at pH 4.7 (dimer–octamer equilibrium) and as a function of NaCl concentration at pH 2.5 (monomer–dimer equilibrium). The MRD method identifies coexisting oligomers from their rotational correlation times and determines their relative populations from the associated dispersion amplitudes. From MRD‐derived correlation times and hydrodynamic model calculations, we confirm that BLG‐A dimers associate to octamers below room temperature. The tendency for BLG‐A dimers to assemble into octamers is found to be considerably weaker than in previous light scattering studies in the presence of buffer salt. At pH 2.5, the MRD data are consistent with an essentially complete transition from monomers in the absence of salt to dimers in 1 M NaCl. Because of an interfering relaxation dispersion from nanosecond water exchange, we cannot determine the oligomer populations at intermediate salt concentrations. This nanosecond dispersion may reflect intersite exchange of water molecules trapped inside the large binding cavity of BLG‐A.
ACS Chemical Neuroscience | 2013
Erik Hellstrand; Marie Grey; Marie-Louise Ainalem; John Ankner; V. Trevor Forsyth; Giovanna Fragneto; Michael Haertlein; Marie-Thérèse Dauvergne; Hanna Nilsson; Patrik Brundin; Sara Linse; Tommy Nylander; Emma Sparr
An amyloid form of the protein α-synuclein is the major component of the intraneuronal inclusions called Lewy bodies, which are the neuropathological hallmark of Parkinsons disease (PD). α-Synuclein is known to associate with anionic lipid membranes, and interactions between aggregating α-synuclein and cellular membranes are thought to be important for PD pathology. We have studied the molecular determinants for adsorption of monomeric α-synuclein to planar model lipid membranes composed of zwitterionic phosphatidylcholine alone or in a mixture with anionic phosphatidylserine (relevant for plasma membranes) or anionic cardiolipin (relevant for mitochondrial membranes). We studied the adsorption of the protein to supported bilayers, the position of the protein within and outside the bilayer, and structural changes in the model membranes using two complementary techniques-quartz crystal microbalance with dissipation monitoring, and neutron reflectometry. We found that the interaction and adsorbed conformation depend on membrane charge, protein charge, and electrostatic screening. The results imply that α-synuclein adsorbs in the headgroup region of anionic lipid bilayers with extensions into the bulk but does not penetrate deeply into or across the hydrophobic acyl chain region. The adsorption to anionic bilayers leads to a small perturbation of the acyl chain packing that is independent of anionic headgroup identity. We also explored the effect of changing the area per headgroup in the lipid bilayer by comparing model systems with different degrees of acyl chain saturation. An increase in area per lipid headgroup leads to an increase in the level of α-synuclein adsorption with a reduced water content in the acyl chain layer. In conclusion, the association of α-synuclein to membranes and its adsorbed conformation are of electrostatic origin, combined with van der Waals interactions, but with a very weak correlation to the molecular structure of the anionic lipid headgroup. The perturbation of the acyl chain packing upon monomeric protein adsorption favors association with unsaturated phospholipids preferentially found in the neuronal membrane.
FEBS Letters | 2005
Jonas Fast; Ann-Kristin Mossberg; Hanna Nilsson; Catharina Svanborg; Mikael Akke; Sara Linse
HAMLET (human alpha‐lactalbumin made lethal to tumor cells) is a complex between α‐lactalbumin and oleic acid that induces apoptosis in tumor cells, but not in healthy cells. Heteronuclear nuclear magnetic resonance (NMR) spectroscopy was used to determine the structure of 13C‐oleic acid in HAMLET, and to study the 15N‐labeled protein. Nuclear Overhauser enhancement spectroscopy shows that the two ends of the fatty acid are in close proximity and close to the double bond, indicating that the oleic acid is bound to HAMLET in a compact conformation. The data further show that HAMLET is a partly unfolded/molten globule‐like complex under physiological conditions.
Journal of Parkinson's disease | 2012
Marie Grey; Sara Linse; Hanna Nilsson; Patrik Brundin; Emma Sparr
Aggregated α-synuclein in Lewy bodies is one of the hallmarks of Parkinsons disease (PD). Earlier observations of α-synuclein aggregates in neurons grafted into brains of PD patients suggested cell-to-cell transfer of α-synuclein and a prion-like mechanism. This prompted the current investigation of whether α-synuclein passes over model phospholipid bilayers. We generated giant unilamellar vesicles (GUVs) containing a small amount of a lipid-conjugated red emitting dye (rhodamine B) and varied the membrane charge by using different molar ratios of DOPC and DOPS or cardiolipin. We then used confocal fluorescence microscopy to examine how monomer, fibril as well as on-pathway α-synuclein species labeled with a green emitting fluorophore (Alexa488) interacted with the phospholipid bilayers of the GUV. We defined conditions that yielded reproducible aggregation kinetics under basal conditions and with none or moderate shaking. We found that on-pathway α-synuclein species and equilibrium amyloid aggregates, but not α-synuclein monomers, bound to lipid membranes. α-Synuclein was particularly strongly associated with GUVs containing the anionic lipids cardiolipin or DOPS, whereas it did not associate with GUVs containing only zwitterionic DOPC. We found that α-synuclein progressively aggregated at the surface of the GUVs, typically in distinct domains rather than uniformly covering the membrane, and that both lipid and protein were incorporated in the aggregates. Importantly, we never observed transport of α-synuclein over the GUV bilayer. This suggests that α-synuclein transport over membranes requires additional molecular players and that it might rely on active transport.
Protein Science | 2008
Mikael C. Bauer; Hanna Nilsson; Eva Thulin; Birgitta Frohm; Johan Malm; Sara Linse
We have studied the binding of Zn2+ to the hexa EF‐hand protein, calbindin D28k—a strong Ca2+‐binder involved in apoptosis regulation—which is highly expressed in brain tissue. By use of radioblots, isothermal titration calorimetry, and competition with a fluorescent Zn2+ chelator, we find that calbindin D28k binds Zn2+ to three rather strong sites with dissociation constants in the low micromolar range. Furthermore, we conclude based on spectroscopic investigations that the Zn2+‐bound state is structurally distinct from the Ca2+‐bound state and that the two forms are incompatible, yielding negative allosteric interaction between the zinc‐ and calcium‐binding events. ANS titrations reveal a change in hydrophobicity upon binding Zn2+. The binding of Zn2+ is compatible with the ability of calbindin to activate myo‐inositol monophosphatase, one of the known targets of calbindin. Through site‐directed mutagenesis, we address the role of cysteine and histidine residues in the binding of Zn2+. Mutation of all five cysteines into serines has no effect on Zn2+‐binding affinity or stoichiometry. However, mutating histidine 80 into a glutamine reduces the binding affinity of the strongest Zn2+ site, indicating that this residue is involved in coordinating the Zn2+ ion in this site. Mutating histidines 5, 22, or 114 has significantly smaller effects on Zn2+‐binding affinity.
Molecular BioSystems | 2011
Olga Szczepankiewicz; Celia Cabaleiro-Lago; Gian Gaetano Tartaglia; Michele Vendruscolo; Therese Hunter; Gary J. Hunter; Hanna Nilsson; Eva Thulin; Sara Linse
A series of recent studies have provided initial evidence about the role of specific intra-molecular interactions in maintaining proteins in their soluble state and in protecting them from aggregation. Here we show that the amino acid sequence of the protein monellin contains two aggregation-prone regions that are prevented from initiating aggregation by multiple non-covalent interactions that favor their burial within the folded state of the protein. By investigating the behavior of single-chain monellin and a series of five of its mutational variants using a variety of biochemical, biophysical and computational techniques, we found that weakening of the non-covalent interaction that stabilizes the native state of the protein leads to an enhanced aggregation propensity. The lag time for fibrillation was found to correlate with the apparent midpoint of thermal denaturation for the series of mutational variants, thus showing that a reduced thermal stability is associated with an increased aggregation tendency. We rationalize these findings by showing that the increase in the aggregation propensity upon mutation can be predicted in a quantitative manner through the increase in the exposure to solvent of the amyloidogenic regions of the sequence caused by the destabilization of the native state. Our findings, which are further discussed in terms of the structure of monellin and the perturbation by the amino acid substitutions of the contact surface between the two subdomains that compose the folded state of monellin, provide a detailed description of the specific intra-molecular interactions that prevent aggregation by stabilizing the native state of a protein.
Nano Letters | 2007
Stina Lindman; Iseult Lynch; Eva Thulin; Hanna Nilsson; Kenneth A. Dawson; Sara Linse
Biophysical Journal | 2006
Stina Lindman; Wei-Feng Xue; Olga Szczepankiewicz; Mikael C. Bauer; Hanna Nilsson; Sara Linse