Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanna Pincas is active.

Publication


Featured researches published by Hanna Pincas.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Association of survival and disease progression with chromosomal instability: A genomic exploration of colorectal cancer

Michal Sheffer; Manny D. Bacolod; Or Zuk; Sarah F. Giardina; Hanna Pincas; Francis Barany; Philip B. Paty; William L. Gerald; Daniel A. Notterman; Eytan Domany

During disease progression the cells that comprise solid malignancies undergo significant changes in gene copy number and chromosome structure. Colorectal cancer provides an excellent model to study this process. To indentify and characterize chromosomal abnormalities in colorectal cancer, we performed a statistical analysis of 299 expression and 130 SNP arrays profiled at different stages of the disease, including normal tissue, adenoma, stages 1–4 adenocarcinoma, and metastasis. We identified broad (> 1/2 chromosomal arm) and focal (< 1/2 chromosomal arm) events. Broad amplifications were noted on chromosomes 7, 8q, 13q, 20, and X and broad deletions on chromosomes 4, 8p, 14q, 15q, 17p, 18, 20p, and 22q. Focal events (gains or losses) were identified in regions containing known cancer pathway genes, such as VEGFA, MYC, MET, FGF6, FGF23, LYN, MMP9, MYBL2, AURKA, UBE2C, and PTEN. Other focal events encompassed potential new candidate tumor suppressors (losses) and oncogenes (gains), including CCDC68, CSMD1, POLR1D, and PMEPA1. From the expression data, we identified genes whose expression levels reflected their copy number changes and used this relationship to impute copy number changes to samples without accompanying SNP data. This analysis provided the statistical power to show that deletions of 8p, 4p, and 15q are associated with survival and disease progression, and that samples with simultaneous deletions in 18q, 8p, 4p, and 15q have a particularly poor prognosis. Annotation analysis reveals that the oxidative phosphorylation pathway shows a strong tendency for decreased expression in the samples characterized by poor prognosis.


Clinical Cancer Research | 2008

CpG Island Methylator Phenotype Associates with Low-Degree Chromosomal Abnormalities in Colorectal Cancer

Yu-Wei Cheng; Hanna Pincas; Manny D. Bacolod; Gunter S. Schemmann; Sarah F. Giardina; Jianmin Huang; Sandra Barral; Kamran Idrees; Sajid A. Khan; Zhaoshi Zeng; Shoshana Rosenberg; Daniel A. Notterman; Jurg Ott; Philip B. Paty; Francis Barany

Purpose: Aberrant promoter methylation and genomic instability occur frequently during colorectal cancer development. CpG island methylator phenotype (CIMP) has been shown to associate with microsatellite instability, and BRAF mutation and is often found in the right-side colon. Nevertheless, the relative importance of CIMP and chromosomal instability (CIN) for tumorigenesis has yet to be thoroughly investigated in sporadic colorectal cancers. Experimental Design: We determined CIMP in 161 primary colorectal cancers and 66 matched normal mucosae using a quantitative bisulfite/PCR/ligase detection reaction (LDR)/Universal Array assay. The validity of CIMP was confirmed in a subset of 60 primary tumors using MethyLight assay and five independent markers. In parallel, CIN was analyzed in the same study cohort using Affymetrix 50K Human Mapping arrays. Results: The identified CIMP-positive cancers correlate with microsatellite instability (P = 0.075) and the BRAF mutation V600E (P = 0.00005). The array-based high-resolution analysis of chromosomal aberrations indicated that the degree of aneuploidy is spread over a wide spectrum among analyzed colorectal cancers. Whether CIN was defined by copy number variations in selected microsatellite loci (criterion 1) or considered as a continuous variable (criterion 2), CIMP-positive samples showed a strong correlation with low-degree chromosomal aberrations (P = 0.075 and P = 0.012, respectively). Similar correlations were observed when CIMP was determined by MethyLight assay (P = 0.001 and P = 0.013, respectively). Conclusion: CIMP-positive tumors generally possess lower chromosomal aberrations, which may only be revealed using a genome-wide approach. The significant difference in the degree of chromosomal aberrations between CIMP-positive and the remainder of samples suggests that epigenetic (CIMP) and genetic (CIN) abnormalities may arise from independent molecular mechanisms of tumor progression.


BMC Systems Biology | 2010

Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase.

Sonali Patil; Hanna Pincas; Jeremy Seto; German Nudelman; Irina Nudelman; Stuart C. Sealfon

BackgroundDendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks.DescriptionWe have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to pathogen detection.ConclusionsThis map represents a navigable aid for presenting a consensus view of the current knowledge on dendritic cell signaling that can be continuously improved through contributions of research community experts. Because the map is available in a machine readable format, it can be edited and may assist researchers in data analysis. Furthermore, the availability of a comprehensive knowledgebase might help further research in this area such as vaccine development. The dendritic cell signaling knowledgebase is accessible at http://tsb.mssm.edu/pathwayPublisher/DC_pathway/DC_pathway_index.html.


Molecular Cancer Research | 2008

MDM2 gene amplification is correlated to tumor progression but not to the presence of SNP309 or TP53 mutational status in primary colorectal cancers.

Ann Forslund; Zhaoshi Zeng; Li-Xuan Qin; Shoshana Rosenberg; Mackevin Ndubuisi; Hanna Pincas; William L. Gerald; Daniel A. Notterman; Francis Barany; Philip B. Paty

Mdm2 is the main regulator of p53 and is amplified in ∼7% of all human cancers. MDM2 gene amplification as well as expression has been correlated to an increased tumorigenic potential. We have analyzed the prevalence of MDM2 gene amplifications and SNP309 in 284 colorectal tumors using a relatively new highly sensitive PCR/ligase detection reaction method in relation to TP53 mutational status and genomic instability. We found MDM2 to be amplified in 9% of the 284 colorectal cancers analyzed and a significantly higher proportion of tumors with high MDM2 gene amplification retained a wild-type p53 gene (P = 0.058). MDM2 gene amplification was significantly correlated to advanced tumor stage. Several small-molecule MDM2 antagonists have already been identified that either physically inhibit the p53-MDM2 binding or the E3 ligase function of MDM2. Our results suggest that MDM2 is a promising target for this type of cancer therapy in a substantial subgroup of colorectal cancers. (Mol Cancer Res 2008;6(2):205–11)


Analytical Methods | 2012

EndoV/DNA ligase mutation scanning assay using microchip capillary electrophoresis and dual-color laser-induced fluorescence detection

Akira Kotani; Małgorzata A. Witek; John K. Osiri; Hong Wang; Rondedrick Sinville; Hanna Pincas; Francis Barany; Steven A. Soper

We report the ability to detect with high sensitivity sporadic mutations using a mutation scanning assay, which employs thermostable endonuclease V (EndoV) and DNA ligase. The products of the mutation scanning assay were separated using microchip capillary electrophoresis (μCE) and detected with a dual-color laser-induced fluorescence (LIF) detector. PCR products from mutant and wild-type DNA of p53 exon 8 were generated using Cy3-labeled forward and Cy5-labeled reverse primers to allow LIF detection with μCE. EndoV recognizes and primarily cleaves heteroduplexed DNA one base 3′ to a mismatch and can nick matched sites at low levels as well. DNA ligase is used to reseal nicks generated at matched sites, which creates a highly sensitive and specific assay for analyzing sporadic mutations in genomic DNA. Heteroduplexed DNA samples were treated with EndoV alone and with both EndoV and DNA ligase and separated using a 4% (w/v) linear polyacrylamide gel constituted in 1x TTE buffer, 7 M urea, and 0.05% (w/v) methyl hydroxyethyl cellulose, which was used to suppress the EOF in the microchip. Sizing of the bands appearing in the electropherogram revealed the approximate position of the mutation. In this study, mutations present in p53 exon 8 generated Cy3-labeled cleavage products of 158 nt and Cy5-labeled cleavage products of 195 nt. The DNA fragments were simultaneously monitored at their respective color using a dual-color LIF system with the 158 and 195 nt fragments detected along with heteroduplexed fragments of 350 nt. The microchip separation was completed within 7 min, almost ten-fold shorter time compared to conventional capillary gel electrophoresis.


Molecular and Cellular Endocrinology | 2014

Outside the box signaling: Secreted factors modulate GnRH receptor-mediated gonadotropin regulation

Hanna Pincas; Soon Gang Choi; Qian Wang; Jingjing Jia; Judith L. Turgeon; Stuart C. Sealfon

Control of gene expression following activation of membrane receptors results from the regulation of intracellular signaling pathways and transcription factors. Accordingly, research to elucidate the regulatory control circuits and cellular data processing mechanisms focuses on intracellular mechanisms. While autocrine and paracrine signaling are acknowledged in endocrinology, secreted factors are not typically recognized as fundamental components of the pathways connecting cell surface receptors to gene control in the nucleus. Studies of the gonadotrope suggest that extracellular regulatory loops may play a central role in the regulation of gonadotropin gene expression by gonadotropin-releasing hormone (GnRH) receptor activation. We review emerging evidence for this phenomenon, which we refer to as exosignaling, in gonadotropin gene control and in other receptor-mediated signaling systems. We propose that basic signaling circuit modules controlling gene expression can be seamlessly distributed across intracellular and exosignaling components that together orchestrate the precise physiological control of gene expression.


Molecular Endocrinology | 2010

Research Resource: Gonadotropin-Releasing Hormone Receptor-Mediated Signaling Network in LβT2 Cells: A Pathway-Based Web-Accessible Knowledgebase

Marc Y. Fink; Hanna Pincas; Soon Gang Choi; German Nudelman; Stuart C. Sealfon

The GnRH receptor (GnRHR), expressed at the cell surface of the anterior pituitary gonadotrope, is critical for normal secretion of gonadotropins LH and FSH, pubertal development, and reproduction. The signaling network downstream of the GnRHR and the molecular bases of the regulation of gonadotropin expression have been the subject of intense research. The murine LbetaT2 cell line represents a mature gonadotrope and therefore is an important model for the study of GnRHR-signaling pathways and modulation of the gonadotrope cell by physiological regulators. In order to facilitate access to the information contained in this complex and evolving literature, we have developed a pathway-based knowledgebase that is web hosted. At present, using 106 relevant primary publications, we curated a comprehensive knowledgebase of the GnRHR signaling in the LbetaT2 cell in the form of a process diagram. Positive and negative controls of gonadotropin gene expression, which included GnRH itself, hypothalamic factors, gonadal steroids and peptides, as well as other hormones, were illustrated. The knowledgebase contains 187 entities and 206 reactions. It was assembled using CellDesigner software, which provides an annotated graphic representation of interactions, stored in Systems Biology Mark-up Language. We then utilized Biological Pathway Publisher, a software suite previously developed in our laboratory, to host the knowledgebase in a web-accessible format as a public resource. In addition, the network entities were linked to a public wiki, providing a forum for discussion, updating, and error correction. The GnRHR-signaling network is openly accessible at http://tsb.mssm.edu/pathwayPublisher/GnRHR_Pathway/GnRHR_Pathway_ index.html.


Journal of Biological Chemistry | 2014

Growth Differentiation Factor 9 (GDF9) Forms an Incoherent Feed-forward Loop Modulating Follicle-stimulating Hormone β-Subunit (FSHβ) Gene Expression

Soon Gang Choi; Qian Wang; Jingjing Jia; Hanna Pincas; Judith L. Turgeon; Stuart C. Sealfon

Background: The mechanisms underlying differential regulation of gonadotropin subunit genes are not fully elucidated. Results: Gonadotrope growth differentiation factor 9 (GDF9) expression, which is suppressed by GnRH, stimulates FSHβ expression. Conclusion: Autocrine secretion of GDF9 contributes to FSH biosynthesis. Significance: Regulation of FSH by GDF9 may contribute to gonadotrope function. Gonadotropin-releasing hormone (GnRH) is secreted in brief pulses from the hypothalamus and regulates follicle-stimulating hormone β-subunit (FSHβ) gene expression in pituitary gonadotropes in a frequency-sensitive manner. The mechanisms underlying its preferential and paradoxical induction of FSHβ by low frequency GnRH pulses are incompletely understood. Here, we identify growth differentiation factor 9 (GDF9) as a GnRH-suppressed autocrine inducer of FSHβ gene expression. GDF9 gene transcription and expression were preferentially decreased by high frequency GnRH pulses. GnRH regulation of GDF9 was concentration-dependent and involved ERK and PKA. GDF9 knockdown or immunoneutralization reduced FSHβ mRNA expression. Conversely, exogenous GDF9 induced FSHβ expression in immortalized gonadotropes and in mouse primary pituitary cells. GDF9 exposure increased FSH secretion in rat primary pituitary cells. GDF9 induced Smad2/3 phosphorylation, which was impeded by ALK5 knockdown and by activin receptor-like kinase (ALK) receptor inhibitor SB-505124, which also suppressed FSHβ expression. Smad2/3 knockdown indicated that FSHβ induction by GDF9 involved Smad2 and Smad3. FSHβ mRNA induction by GDF9 and GnRH was synergistic. We hypothesized that GDF9 contributes to a regulatory loop that tunes the GnRH frequency-response characteristics of the FSHβ gene. To test this, we determined the effects of GDF9 knockdown on FSHβ induction at different GnRH pulse frequencies using a parallel perifusion system. Reduction of GDF9 shifted the characteristic pattern of GnRH pulse frequency sensitivity. These results identify GDF9 as contributing to an incoherent feed-forward loop, comprising both intracellular and secreted components, that regulates FSHβ expression in response to activation of cell surface GnRH receptors.


Molecular Endocrinology | 2013

β-Catenin Regulates GnRH-Induced FSHβ Gene Expression

Qian Wang; Maria Chikina; Elena Zaslavsky; Hanna Pincas; Stuart C. Sealfon

The regulation of gonadotropin synthesis by GnRH plays an essential role in the neuroendocrine control of reproduction. The known signaling mechanisms involved in gonadotropin synthesis have been expanding. For example, involvement of β-catenin in LHβ induction by GnRH has been discovered. We examined the role of β-catenin in FSHβ gene expression in LβT2 gonadotrope cells. GnRH caused a sustained increase in nuclear β-catenin levels, which was significantly reduced by c-Jun N-terminal kinase (JNK) inhibition. Small interfering RNA-mediated knockdown of β-catenin mRNA demonstrated that induction of FSHβ mRNA by GnRH depended on β-catenin and that regulation of FSHβ by β-catenin occurred independently of the JNK-c-jun pathway. β-Catenin depletion had no impact on FSHβ mRNA stability. In LβT2 cells transfected with FSHβ promoter luciferase fusion constructs, GnRH responsiveness was conferred by the proximal promoter (-944/-1) and was markedly decreased by β-catenin knockdown. However, none of the T-cell factor/lymphoid enhancer factor binding sites in that region were required for promoter activation by GnRH. Chromatin immunoprecipitation further corroborated the absence of direct interaction between β-catenin and the 1.8-kb FSHβ promoter. To elucidate the mechanism for the β-catenin effect, we analyzed approximately 1 billion reads of next-generation RNA sequencing β-catenin knockdown assays and selected the nuclear cofactor breast cancer metastasis-suppressor 1-like (Brms1L) as one candidate for further study. Subsequent experiments confirmed that Brms1L mRNA expression was decreased by β-catenin knockdown as well as by JNK inhibition. Furthermore, knockdown of Brms1L significantly attenuated GnRH-induced FSHβ expression. Thus, our findings indicate that the expression of Brms1L depends on β-catenin activity and contributes to FSHβ induction by GnRH.


Journal of Immunological Methods | 2010

Validation of efficient high-throughput plasmid and siRNA transfection of human monocyte-derived dendritic cells without cell maturation.

Robert N. Bowles; Sonali Patil; Hanna Pincas; Stuart C. Sealfon

Transfection of primary immune cells is difficult to achieve at high efficiency and without cell activation and maturation. Dendritic cells (DCs) represent a key link between the innate and adaptive immune systems. Delineating the signaling pathways involved in the activation of human primary DCs and reverse engineering cellular inflammatory pathways have been challenging tasks. We optimized and validated an effective high-throughput transfection protocol, allowing us to transiently express DNA in naïve primary DCs, as well as investigate the effect of gene silencing by RNA interference. Using a high-throughput nucleofection system, monocyte-derived DCs were nucleoporated with a plasmid expressing green fluorescent protein (GFP), and transfection efficiency was determined by flow cytometry, based on GFP expression. To evaluate the effect of nucleoporation on DC maturation, the expression of cell surface markers CD86 and MHCII in GFP-positive cells was analyzed by flow cytometry. We established optimal assay conditions with a cell viability reaching 70%, a transfection efficiency of over 50%, and unchanged CD86 and MHCII expression. We examined the impact of small interfering RNA (siRNA)-mediated knockdown of RIG-I, a key viral recognition receptor, on the induction of the interferon (IFN) response in DCs infected with Newcastle disease virus. RIG-I protein was undetectable by Western blot in siRNA-treated cells. RIG-I knockdown caused a 75% reduction in the induction of IFNβ mRNA compared with the negative control siRNA. This protocol should be a valuable tool for probing the immune response pathways activated in human DCs.

Collaboration


Dive into the Hanna Pincas's collaboration.

Top Co-Authors

Avatar

Stuart C. Sealfon

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Francis Barany

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soon Gang Choi

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip B. Paty

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Qian Wang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederique Ruf-Zamojski

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

German Nudelman

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge