Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanna Regus-Leidig is active.

Publication


Featured researches published by Hanna Regus-Leidig.


The Journal of Comparative Neurology | 2009

Early steps in the assembly of photoreceptor ribbon synapses in the mouse retina: The involvement of precursor spheres

Hanna Regus-Leidig; Susanne tom Dieck; Dana Specht; Lars Meyer; Johann Helmut Brandstätter

The retinal photoreceptor ribbon synapse is a chemical synapse structurally and functionally specialized for the tonic release of neurotransmitter. It is characterized by the presynaptic ribbon, an electron‐dense organelle at the active zone covered by hundreds of synaptic vesicles. In conventional synapses, dense‐core transport vesicles carrying a set of active zone proteins are implicated in early steps of synapse formation. In photoreceptor ribbon synapses, synaptic spheres are suggested to be involved in ribbon synapse assembly, but nothing is known about the molecular composition of these organelles. With light, electron, and stimulated emission depletion microscopy and immunocytochemistry, we investigated a series of presynaptic proteins during photoreceptor synaptogenesis. The cytomatrix proteins Bassoon, Piccolo, RIBEYE, and RIM1 appear early in synaptogenesis. They are transported in nonmembranous, electron‐dense, spherical transport units, which we called precursor spheres, to the future presynaptic site. Other presynaptic proteins, i.e., Munc13, CAST1, RIM2, and an L‐type Ca2+ channel α1 subunit are not associated with the precursor spheres. They cluster directly at the active zone some time after the first set of cytomatrix proteins has arrived. By quantitative electron microscopy, we found an inverse correlation between the numbers of spheres and synaptic ribbons in the postnatally developing photoreceptor synaptic terminals. From these results, we suggest that the precursor spheres are the transport units for proteins of the photoreceptor ribbon compartment and are involved in the assembly of mature synaptic ribbons. J. Comp. Neurol. 512:814–824, 2009.


Brain | 2010

Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases

Christoph S. Clemen; Karthikeyan Tangavelou; Karl-Heinz Strucksberg; Steffen Just; Linda Gaertner; Hanna Regus-Leidig; Maria Stumpf; Jens Reimann; Roland Coras; Reginald O. Morgan; Maria-Pilar Fernandez; Andreas Hofmann; Stefan Müller; Benedikt Schoser; Franz-Georg Hanisch; Wolfgang Rottbauer; Ingmar Blümcke; Stephan von Hörsten; Ludwig Eichinger; Rolf Schröder

Mutations of the human valosin-containing protein gene cause autosomal-dominant inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. We identified strumpellin as a novel valosin-containing protein binding partner. Strumpellin mutations have been shown to cause hereditary spastic paraplegia. We demonstrate that strumpellin is a ubiquitously expressed protein present in cytosolic and endoplasmic reticulum cell fractions. Overexpression or ablation of wild-type strumpellin caused significantly reduced wound closure velocities in wound healing assays, whereas overexpression of the disease-causing strumpellin N471D mutant showed no functional effect. Strumpellin knockdown experiments in human neuroblastoma cells resulted in a dramatic reduction of axonal outgrowth. Knockdown studies in zebrafish revealed severe cardiac contractile dysfunction, tail curvature and impaired motility. The latter phenotype is due to a loss of central and peripheral motoneuron formation. These data imply a strumpellin loss-of-function pathogenesis in hereditary spastic paraplegia. In the human central nervous system strumpellin shows a presynaptic localization. We further identified strumpellin in pathological protein aggregates in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, various myofibrillar myopathies and in cortical neurons of a Huntingtons disease mouse model. Beyond hereditary spastic paraplegia, our findings imply that mutant forms of strumpellin and valosin-containing protein may have a concerted pathogenic role in various protein aggregate diseases.


Journal of Cell Science | 2009

Aberrant function and structure of retinal ribbon synapses in the absence of complexin 3 and complexin 4

Kerstin Reim; Hanna Regus-Leidig; Josef Ammermüller; Ahmed El-Kordi; Konstantin Radyushkin; Hannelore Ehrenreich; Johann Helmut Brandstätter; Nils Brose

Complexins regulate the speed and Ca2+ sensitivity of SNARE-mediated synaptic vesicle fusion at conventional synapses. Two of the vertebrate complexins, Cplx3 and Cplx4, are specifically localized to retinal ribbon synapses. To test whether Cplx3 and Cplx4 contribute to the highly efficient transmitter release at ribbon synapses, we studied retina function and structure in Cplx3 and Cplx4 single- and double-knockout mice. Electroretinographic recordings from single and double mutants revealed a cooperative perturbing effect of Cplx3 and Cplx4 deletion on the b-wave amplitude, whereas most other detected effects in both plexiform synaptic layers were additive. Light and electron microscopic analyses uncovered a disorganized outer plexiform layer in the retinae of mice lacking Cplx3 and Cplx4, with a significant proportion of photoreceptor terminals containing spherical free-floating ribbons. These structural and functional aberrations were accompanied by behavioural deficits indicative of a vision deficit. Our results show that Cplx3 and Cplx4 are essential regulators of transmitter release at retinal ribbon synapses. Their loss leads to aberrant adjustment and fine-tuning of transmitter release at the photoreceptor ribbon synapse, alterations in transmission at bipolar cell terminals, changes in the temporal structure of synaptic processing in the inner plexiform layer of the retina and perturbed vision.


European Journal of Neuroscience | 2007

Structural and functional remodeling in the retina of a mouse with a photoreceptor synaptopathy: plasticity in the rod and degeneration in the cone system

Dana Specht; Susanne tom Dieck; Josef Ammermüller; Hanna Regus-Leidig; Eckart D. Gundelfinger; Johann Helmut Brandstätter

Knowledge about the plastic and regenerative capacity of the retina is of key importance for therapeutic approaches to restore vision in patients who suffer from degenerative retinal diseases. In the retinae of mice, mutant for the presynaptic scaffolding protein Bassoon, signal transfer at photoreceptor ribbon synapses is disturbed due to impaired ribbon attachment to the active zone. In a long‐term study we observed, with light and electron microscopic immunocytochemistry and electroretinographic recordings, two overlapping events in the Bassoon mutant retina, i.e. loss of photoreceptor synapses in the outer plexiform layer, and structural remodeling and formation of ectopic photoreceptor synapses in the outer nuclear layer, a region usually devoid of synapses. Formation of ectopic synaptic sites starts around the time when photoreceptor synaptogenesis is completed in wild‐type mice and progresses throughout life. The result is a dense plexus of ectopic photoreceptor synapses with significantly altered but considerable synaptic transmission. Ectopic synapse formation is led by the sprouting of horizontal cells followed by the extension of rod bipolar cell neurites that fasciculate with and grow along the horizontal cell processes. Although only the rod photoreceptors and their postsynaptic partners show structural and functional remodeling, our study demonstrates the potential of the retina for long‐lasting plastic changes.


PLOS ONE | 2013

Identification and Immunocytochemical Characterization of Piccolino, a Novel Piccolo Splice Variant Selectively Expressed at Sensory Ribbon Synapses of the Eye and Ear

Hanna Regus-Leidig; Corinna Ott; Martina Löhner; Jenny Atorf; Michaela Fuchs; Tina Sedmak; Jan Kremers; Anna Fejtova; Eckart D. Gundelfinger; Johann Helmut Brandstätter

Piccolo is one of the largest cytomatrix proteins present at active zones of chemical synapses, where it is suggested to play a role in recruiting and integrating molecules relevant for both synaptic vesicle exo- and endocytosis. Here we examined the retina of a Piccolo-mutant mouse with a targeted deletion of exon 14 in the Pclo gene. Piccolo deficiency resulted in its profound loss at conventional chemical amacrine cell synapses but retinal ribbon synapses were structurally and functionally unaffected. This led to the identification of a shorter, ribbon-specific Piccolo variant, Piccolino, present in retinal photoreceptor cells, bipolar cells, as well as in inner hair cells of the inner ear. By RT-PCR analysis and the generation of a Piccolino-specific antibody we show that non-splicing of intron 5/6 leads to premature translation termination and generation of the C-terminally truncated protein specifically expressed at active zones of ribbon synapse containing cell types. With in situ proximity ligation assays we provide evidence that this truncation leads to the absence of interaction sites for Bassoon, Munc13, and presumably also ELKS/CAST, RIM2, and the L-type Ca2 + channel which exist in the full-length Piccolo at active zones of conventional chemical synapses. The putative lack of interactions with proteins of the active zone suggests a function of Piccolino at ribbon synapses of sensory neurons different from Piccolo’s function at conventional chemical synapses.


Acta Physiologica | 2012

Structure and function of a complex sensory synapse

Hanna Regus-Leidig; Johann Helmut Brandstätter

Vision is the most important of the senses for humans, and the retina is the first stage in the processing of light signals in the visual system. In the retina, highly specialized light‐sensing neurons, the rod and cone photoreceptors, convert light into neural signals. These signals are extensively processed and filtered in the subsequent retinal network before transmitted to the higher visual centres in the brain, where the perception of viewed objects and scenes is finally constructed. A key feature of signal processing in the mammalian retina is parallel processing. Visual information is segregated in parallel pathways already at the rod and cone photoreceptor terminals, which provide multiple output synapses for the faithful encoding and transfer of the visual signals to the post‐receptoral retinal network. This review aims at highlighting the current knowledge about the structural and functional pre‐ and post‐synaptic specializations of rod and cone photoreceptor ribbon synapses, which belong to the most complex chemical synapses in the central nervous system.


European Journal of Cell Biology | 2010

Absence of functional active zone protein Bassoon affects assembly and transport of ribbon precursors during early steps of photoreceptor synaptogenesis.

Hanna Regus-Leidig; Susanne tom Dieck; Johann Helmut Brandstätter

The retinal photoreceptor ribbon synapse is a structurally and functionally unique type of chemical synapse, specialized for tonic release of neurotransmitter in the dark. It is characterized by the presynaptic ribbon, an electron-dense organelle at the active zone, which is covered by hundreds of synaptic vesicles. Recently we showed that photoreceptor ribbon complexes are assembled from non-membranous, spherical densities--the precursor spheres--during the first two postnatal weeks of photoreceptor synaptogenesis. A core component of the precursor spheres and a key player in attaching the ribbon to the active zone is the presynaptic cytomatrix protein Bassoon. In this study, we examined in a comprehensive light and electron microscopic analysis whether Bassoon plays a role in the formation of the precursor spheres using Bassoon mutant mice lacking functional Bassoon. We report that developing Bassoon mutant photoreceptors contain fewer and smaller precursor spheres and that transport of precursor spheres to nascent synapses is delayed compared to wild-type controls. Moreover, western blot analyses of homogenates from postnatal day 0 (P0) to P14 Bassoon mutant retinae exhibit lower RIBEYE and Piccolo protein levels compared to the wild type, indicating elevated protein degradation in the absence of Bassoon. Our findings reveal a novel function of Bassoon in the early formation and delivery of precursor spheres to nascent ribbon synaptic sites in addition to its known role in ribbon anchoring during later stages of photoreceptor ribbon synaptogenesis.


PLOS ONE | 2014

Photoreceptor Degeneration in Two Mouse Models for Congenital Stationary Night Blindness Type 2

Hanna Regus-Leidig; Jenny Atorf; Andreas Feigenspan; Jan Kremers; Marion A. Maw; Johann Helmut Brandstätter

Light-dependent conductance changes of voltage-gated Cav1.4 channels regulate neurotransmitter release at photoreceptor ribbon synapses. Mutations in the human CACNA1F gene encoding the α1F subunit of Cav1.4 channels cause an incomplete form of X-linked congenital stationary night blindness (CSNB2). Many CACNA1F mutations are loss-of-function mutations resulting in non-functional Cav1.4 channels, but some mutations alter the channels’ gating properties and, presumably, disturb Ca2+ influx at photoreceptor ribbon synapses. Notably, a CACNA1F mutation (I745T) was identified in a family with an uncommonly severe CSNB2-like phenotype, and, when expressed in a heterologous system, the mutation was shown to shift the voltage-dependence of channel activation, representing a gain-of-function. To gain insight into the pathomechanism that could explain the severity of this disorder, we generated a mouse model with the corresponding mutation in the murine Cacna1f gene (I756T) and compared it with a mouse model carrying a loss-of-function mutation (ΔEx14–17) in a longitudinal study up to eight months of age. In ΔEx14–17 mutants, the b-wave in the electroretinogram was absent, photoreceptor ribbon synapses were abnormal, and Ca2+ responses to depolarization of photoreceptor terminals were undetectable. In contrast, I756T mutants had a reduced scotopic b-wave, some intact rod ribbon synapses, and a strong, though abnormal, Ca2+ response to depolarization. Both mutants showed a progressive photoreceptor loss, but degeneration was more severe and significantly enhanced in the I756T mutants compared to the ΔEx14–17 mutants.


Frontiers in Cellular Neuroscience | 2014

In vivo knockdown of Piccolino disrupts presynaptic ribbon morphology in mouse photoreceptor synapses

Hanna Regus-Leidig; Michaela Fuchs; Martina Löhner; Sarah R. Leist; Sergio Leal-Ortiz; Vince A. Chiodo; William W. Hauswirth; Craig C. Garner; Johann Helmut Brandstätter

Piccolo is the largest known cytomatrix protein at active zones of chemical synapses. A growing number of studies on conventional chemical synapses assign Piccolo a role in the recruitment and integration of molecules relevant for both endo- and exocytosis of synaptic vesicles, the dynamic assembly of presynaptic F-actin, as well as the proteostasis of presynaptic proteins, yet a direct function in the structural organization of the active zone has not been uncovered in part due to the expression of multiple alternatively spliced isoforms. We recently identified Piccolino, a Piccolo splice variant specifically expressed in sensory ribbon synapses of the eye and ear. Here we down regulated Piccolino in vivo via an adeno-associated virus-based RNA interference approach and explored the impact on the presynaptic structure of mouse photoreceptor ribbon synapses. Detailed immunocytochemical light and electron microscopical analysis of Piccolino knockdown in photoreceptors revealed a hitherto undescribed photoreceptor ribbon synaptic phenotype with striking morphological changes of synaptic ribbon ultrastructure.


Frontiers in Cellular Neuroscience | 2014

Evidence for a Clathrin-independent mode of endocytosis at a continuously active sensory synapse

Michaela Fuchs; Johann Helmut Brandstätter; Hanna Regus-Leidig

Synaptic vesicle exocytosis at chemical synapses is followed by compensatory endocytosis. Multiple pathways including Clathrin-mediated retrieval of single vesicles, bulk retrieval of large cisternae, and kiss-and-run retrieval have been reported to contribute to vesicle recycling. Particularly at the continuously active ribbon synapses of retinal photoreceptor and bipolar cells, compensatory endocytosis plays an essential role to provide ongoing vesicle supply. Yet, little is known about the mechanisms that contribute to endocytosis at these highly complex synapses. To identify possible specializations in ribbon synaptic endocytosis during different states of activity, we exposed mice to controlled lighting conditions and compared the distribution of endocytotic proteins at rod and cone photoreceptor, and ON bipolar cell ribbon synapses with light and electron microscopy. In mouse ON bipolar cell terminals, Clathrin-mediated endocytosis seemed to be the dominant mode of endocytosis at all adaptation states analyzed. In contrast, in mouse photoreceptor terminals in addition to Clathrin-coated pits, clusters of membranously connected electron-dense vesicles appeared during prolonged darkness. These clusters labeled for Dynamin3, Endophilin1, and Synaptojanin1, but not for AP180, Clathrin LC, and hsc70. We hypothesize that rod and cone photoreceptors possess an additional Clathrin-independent mode of vesicle retrieval supporting the continuous synaptic vesicle supply during prolonged high activity.

Collaboration


Dive into the Hanna Regus-Leidig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenny Atorf

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Jan Kremers

University of Bradford

View shared research outputs
Top Co-Authors

Avatar

Andreas Feigenspan

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Michaela Fuchs

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Gießl

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Dana Specht

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Martina Löhner

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge