Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hannah F. Clarke is active.

Publication


Featured researches published by Hannah F. Clarke.


Science | 2004

Cognitive inflexibility after prefrontal serotonin depletion.

Hannah F. Clarke; Jeffrey W. Dalley; Harriet S. Crofts; Trevor W. Robbins; Angela C. Roberts

Serotonergic dysregulation within the prefrontal cortex (PFC) is implicated in many neuropsychiatric disorders, but the precise role of serotonin within the PFC is poorly understood. Using a serial discrimination reversal paradigm, we showed that upon reversal, selective serotonin depletion of the marmoset PFC produced perseverative responding to the previously rewarded stimulus without any significant effects on either retention of a discrimination learned preoperatively or acquisition of a novel discrimination postoperatively. These results highlight the importance of prefrontal serotonin in behavioral flexibility and are highly relevant to obsessive-compulsive disorder, schizophrenia, and the cognitive sequelae of drug abuse in which perseveration is prominent.


The Journal of Neuroscience | 2005

Prefrontal Serotonin Depletion Affects Reversal Learning But Not Attentional Set Shifting

Hannah F. Clarke; Susannah Walker; Harriet S. Crofts; Jeffrey W. Dalley; Trevor W. Robbins; Angela C. Roberts

Recently, we have shown that serotonin (5-HT) depletion from the prefrontal cortex (PFC) of the marmoset monkey impairs performance on a serial discrimination reversal (SDR) task, resulting in perseverative responding to the previously correct stimulus (Clarke et al., 2004). This pattern of impairment is just one example of inflexible responding seen after damage to the PFC, with performance on the SDR task being dependent on the integrity of the orbitofrontal cortex. However, the contribution of 5-HT to other forms of flexible responding, such as attentional set shifting, an ability dependent on lateral PFC (Dias et al., 1996a), is unknown. The present study addresses this issue by examining the effects of 5,7-dihydroxytryptamine-induced PFC 5-HT depletions on the ability to shift attention between two perceptual dimensions of a compound visual stimulus (extradimensional shift). Monkeys with selective PFC 5-HT lesions, despite being impaired in their ability to reverse a stimulus-reward association, were unimpaired in their ability to make an extradimensional shift when compared with sham-operated controls. These findings suggest that 5-HT is critical for flexible responding at the level of changing stimulus-reward contingencies but is not essential for the higher-order shifting of attentional set. Thus, psychological functions dependent on different loci within the PFC are differentially sensitive to serotonergic modulation, a finding of relevance to our understanding of cognitive inflexibility apparent in disorders such as obsessive-compulsive disorder and schizophrenia.


The Journal of Neuroscience | 2008

Lesions of the Medial Striatum in Monkeys Produce Perseverative Impairments during Reversal Learning Similar to Those Produced by Lesions of the Orbitofrontal Cortex

Hannah F. Clarke; Trevor W. Robbins; Angela C. Roberts

The ability to switch responding between two visual stimuli based on their changing relationship with reward is dependent on the orbitofrontal cortex (OFC). OFC lesions in humans, monkeys, and rats disrupt performance on a common test of this ability, the visual serial discrimination reversal task. This finding is of particular significance to our understanding of psychiatric disorders such as obsessive–compulsive disorder (OCD) and schizophrenia, in which behavioral inflexibility is a prominent symptom. Although OFC dysfunction can occur in these disorders, there is considerable evidence for more widespread dysfunction within frontostriatal and frontoamygdalar circuitry. Because the contribution of these subcortical structures to behavioral flexibility is poorly understood, the present study compared the effects of excitotoxic lesions of the medial striatum (MS), amygdala, and OFC in the marmoset monkey on performance of the serial reversal task. All monkeys were able to learn a novel stimulus–reward association but, compared with both control and amygdala-lesioned monkeys, those with MS or OFC lesions showed a perseverative impairment in their ability to reverse this association. However, whereas both MS and OFC groups showed insensitivity to negative feedback, only OFC-lesioned monkeys showed insensitivity to positive feedback. These findings suggest that, for different reasons, both the MS and OFC support behavioral flexibility after changes in reward contingencies, and are consistent with the hypothesis that striatal and OFC dysfunction can contribute to pathological perseveration.


The Journal of Neuroscience | 2010

Differential Contributions of the Primate Ventrolateral Prefrontal and Orbitofrontal Cortex to Serial Reversal Learning

Rafal Rygula; Susannah Walker; Hannah F. Clarke; Trevor W. Robbins; Angela C. Roberts

The discrimination reversal paradigm is commonly used to measure a subjects ability to adapt their behavior according to changes in stimulus–reward contingencies. Human functional neuroimaging studies have demonstrated activations in the lateral orbitofrontal cortex (OFC) and the inferior frontal gyrus (IFG) in subjects performing this task. Excitotoxic lesions of analogous regions in marmosets have revealed, however, that although the OFC is indeed critical for reversal learning, ventrolateral prefrontal cortex (VLPFC) (analogous to IFG) is not, contributing instead to higher order processing, such as that required in attentional set-shifting and strategy transfer. One major difference between the marmoset and human studies has been the level of training subjects received in reversal learning, being far greater in the latter. Since exposure to repeated contingency changes, as occurs in serial reversal learning, is likely to trigger the development of higher order, rule-based strategies, we hypothesized a critical role of the marmoset VLPFC in performance of a serial reversal learning paradigm. After extensive training in reversal learning, marmosets received an excitotoxic lesion of the VLPFC, OFC, or a sham control procedure. In agreement with our prediction, postsurgery, VLPFC lesioned animals were impaired in performing a series of discrimination reversals, but only when novel visual stimuli were introduced. In contrast, OFC lesioned animals were impaired regardless of whether the visual stimuli were the same or different from those used during presurgery training. Together, these data demonstrate the heterogeneous but interrelated involvement of primate OFC and VLPFC in the performance of serial reversal learning.


The Journal of Neuroscience | 2011

Dopamine, But Not Serotonin, Regulates Reversal Learning in the Marmoset Caudate Nucleus

Hannah F. Clarke; Gemma J. Hill; Trevor W. Robbins; Angela C. Roberts

Studies of visual discrimination reversal learning have revealed striking neurochemical dissociations at the level of the orbitofrontal cortex (OFC) with serotoninergic, but not dopaminergic, integrity being important for successful reversal learning. These findings have considerable implications for disorders such as obsessive compulsive disorder and schizophrenia, in which reversal learning is impaired, and which are primarily treated with drugs targeting the dopaminergic and serotoninergic systems. Dysfunction in such disorders however, is not limited to the OFC and extends subcortically to other structures implicated in reversal learning, such as the medial caudate nucleus. Therefore, because the roles of the serotonin and dopamine within the caudate nucleus are poorly understood, this study compared the effects of selective serotoninergic or selective dopaminergic depletions of the marmoset medial caudate nucleus on serial discrimination reversal learning. All monkeys were able to learn novel stimulus–reward associations but, unlike control monkeys and monkeys with selective serotoninergic medial caudate depletions, dopamine-depleted monkeys were markedly impaired in their ability to reverse this association. This impairment was not perseverative in nature. These findings are the opposite of those seen in the OFC and provide evidence for a neurochemical double dissociation between the OFC and medial caudate in the regulation of reversal learning. Although the specific contributions of these monoamines within the OFC–striatal circuit remain to be elucidated, these findings have profound implications for the development of drugs designed to remediate some of the cognitive processes underlying impaired reversal learning.


Biological Psychiatry | 2012

Lesions of Ventrolateral Prefrontal or Anterior Orbitofrontal Cortex in Primates Heighten Negative Emotion

Carmen Agustín-Pavón; Katrin Braesicke; Yoshiro Shiba; Andrea M. Santangelo; Yevheniia Mikheenko; Gemma Cockroft; Faaiza Asma; Hannah F. Clarke; Mei-See Man; Angela C. Roberts

BACKGROUND Heightened fear and anxiety are core symptoms of a variety of neuropsychiatric disorders. They are associated with structural and activity changes throughout neural circuitry that includes the ventral and medial prefrontal cortices (PFC), the amygdala, and hippocampus. Although the contributions of the medial PFC, amygdala, and hippocampus to fear and anxiety have been studied extensively with animal models, the selective roles of the ventral PFC-including the ventrolateral prefrontal cortex (vlPFC) and orbitofrontal cortex-are poorly understood. METHODS We investigated the effects of selective excitotoxic lesions of either the vlPFC or anterior orbitofrontal cortex (antOFC) on anxious behavior and Pavlovian conditioned autonomic and behavioral fear responses in the New World primate, the common marmoset. RESULTS Both vlPFC and antOFC lesions resulted in stronger, less adaptable conditioned fear responses. They also heightened the anxiety responses of a marmoset to a human intruder. In contrast, only a lesion of the vlPFC affected the coping style that a marmoset displayed in the presence of the human intruder, increasing the likelihood of proactive mobbing. CONCLUSIONS These results suggest that both the antOFC and vlPFC can downregulate fear and anxiety and, together, provide necessary but independent contributions to the top-down control of negative emotion.


Cerebral Cortex | 2015

Role of Central Serotonin in Anticipation of Rewarding and Punishing Outcomes: Effects of Selective Amygdala or Orbitofrontal 5-HT Depletion

Rafal Rygula; Hannah F. Clarke; Rudolf N. Cardinal; Gemma Cockcroft; Jing Xia; Jeffrey W. Dalley; Trevor W. Robbins; Angela C. Roberts

Understanding the role of serotonin (or 5-hydroxytryptamine, 5-HT) in aversive processing has been hampered by the contradictory findings, across studies, of increased sensitivity to punishment in terms of subsequent response choice but decreased sensitivity to punishment-induced response suppression following gross depletion of central 5-HT. To address this apparent discrepancy, the present study determined whether both effects could be found in the same animals by performing localized 5-HT depletions in the amygdala or orbitofrontal cortex (OFC) of a New World monkey, the common marmoset. 5-HT depletion in the amygdala impaired response choice on a probabilistic visual discrimination task by increasing the effectiveness of misleading, or false, punishment and reward, and decreased response suppression in a variable interval test of punishment sensitivity that employed the same reward and punisher. 5-HT depletion in the OFC also disrupted probabilistic discrimination learning and decreased response suppression. Computational modeling of behavior on the discrimination task showed that the lesions reduced reinforcement sensitivity. A novel, unitary account of the findings in terms of the causal role of 5-HT in the anticipation of both negative and positive motivational outcomes is proposed and discussed in relation to current theories of 5-HT function and our understanding of mood and anxiety disorders.


The Journal of Neuroscience | 2014

Orbitofrontal Dopamine Depletion Upregulates Caudate Dopamine and Alters Behavior via Changes in Reinforcement Sensitivity

Hannah F. Clarke; Rudolf N. Cardinal; Rafal Rygula; Young T. Hong; Tim D. Fryer; Stephen J. Sawiak; Valentina Ferrari; Gemma Cockcroft; Franklin I. Aigbirhio; Trevor W. Robbins; Angela C. Roberts

Schizophrenia is associated with upregulation of dopamine (DA) release in the caudate nucleus. The caudate has dense connections with the orbitofrontal cortex (OFC) via the frontostriatal loops, and both areas exhibit pathophysiological change in schizophrenia. Despite evidence that abnormalities in dopaminergic neurotransmission and prefrontal cortex function co-occur in schizophrenia, the influence of OFC DA on caudate DA and reinforcement processing is poorly understood. To test the hypothesis that OFC dopaminergic dysfunction disrupts caudate dopamine function, we selectively depleted dopamine from the OFC of marmoset monkeys and measured striatal extracellular dopamine levels (using microdialysis) and dopamine D2/D3 receptor binding (using positron emission tomography), while modeling reinforcement-related behavior in a discrimination learning paradigm. OFC dopamine depletion caused an increase in tonic dopamine levels in the caudate nucleus and a corresponding reduction in D2/D3 receptor binding. Computational modeling of behavior showed that the lesion increased response exploration, reducing the tendency to persist with a recently chosen response side. This effect is akin to increased response switching previously seen in schizophrenia and was correlated with striatal but not OFC D2/D3 receptor binding. These results demonstrate that OFC dopamine depletion is sufficient to induce striatal hyperdopaminergia and changes in reinforcement learning relevant to schizophrenia.


Cerebral Cortex | 2009

The Role of the Orbitofrontal Cortex and Medial Striatum in the Regulation of Prepotent Responses to Food Rewards

Mei-See Man; Hannah F. Clarke; Angela C. Roberts

An impairment in learning to inhibit prepotent responses to positive stimuli is associated with damage to the orbitofrontal cortex (OFC) in rats, monkeys, and humans performing discrimination reversal, extinction, and detour reaching tasks. In contrast, a recent study showed that OFC-lesioned rhesus monkeys could learn to select the smaller of 2 quantities of food reward in order to receive the larger reward, at an equivalent rate to controls, despite the requirement to inhibit a prepotent response. Given this result, the aim of the present study was to further specify the contexts under which the OFC regulates responding and to identify additional components of limbic circuitry that contribute to such regulation. Marmosets with lesions of the OFC and medial striatum (MS), but not the amygdala, made more prepotent responses to a clear Perspex box containing high incentive food before learning to choose the box containing low incentive food, to obtain reward. However, having learned the incongruent incentive discrimination OFC- and MS-lesioned monkeys were impaired upon reversal of the reward contingencies, repeatedly selecting the previously rewarded low incentive object. These findings identify the critical contribution of the OFC and MS in the regulation of responding by affective cues.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Regional inactivations of primate ventral prefrontal cortex reveal two distinct mechanisms underlying negative bias in decision making.

Hannah F. Clarke; Nicole K. Horst; Angela C. Roberts

Significance Fear of negative outcomes has a powerful adverse influence on decision making in anxiety disorders. Although neuroimaging studies of patients with anxiety disorders have revealed dysregulation in numerous frontal brain regions including the orbitofrontal and ventrolateral prefrontal cortex, the causal involvement of this dysregulation is unknown. Here we demonstrate that in the marmoset monkey, inactivation of anterior orbitofrontal or ventrolateral prefrontal cortex increases negative bias in decision making via two distinct cognitive mechanisms—elevated uncertainty and attentional disruption, respectively. These findings provide, to our knowledge, the first direct evidence that dysregulation of distinct neurocognitive mechanisms within the prefrontal cortex may underlie the mixed etiology of anxiety disorders. Such insight will allow the development of more precise diagnostics and individually tailored therapeutic approaches. Dysregulation of the orbitofrontal and ventrolateral prefrontal cortices is implicated in anxiety and mood disorders, but the specific contributions of each region are unknown, including how they gate the impact of threat on decision making. To address this, the effects of GABAergic inactivation of these regions were studied in marmoset monkeys performing an instrumental approach–avoidance decision-making task that is sensitive to changes in anxiety. Inactivation of either region induced a negative bias away from punishment that could be ameliorated with anxiolytic treatment. However, whereas the effects of ventrolateral prefrontal cortex inactivation on punishment avoidance were seen immediately, those of orbitofrontal cortex inactivation were delayed and their expression was dependent upon an amygdala–anterior hippocampal circuit. We propose that these negative biases result from deficits in attentional control and punishment prediction, respectively, and that they provide the basis for understanding how distinct regional prefrontal dysregulation contributes to the heterogeneity of anxiety disorders with implications for cognitive-behavioral treatment strategies.

Collaboration


Dive into the Hannah F. Clarke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafal Rygula

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Susannah Walker

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge